IT91-1114

Numerical Calculation Algorithm for Transfer Function Bounds
of Convolutional Codes and TCM Schemes
BEHABIFGB L TCM FRICBT D5ZR R /-

) BRSO T HEBMERET VT X A

Hirosuke Yamamoto Hiroyuki Fujiwara
A& & R IEBAZ

Department of Communications and Systems

University of Electro-Communications
TR K EATF R

ABSTRACT A new algorithm is proposed to calculate the transfer function T(D) and
g—fﬁ—"’ll r=1 numerically, which are included in the well-known upper bounds of the error-event
and bit-error probabilities, respectively, for convolutional codes and trellis-coded modulation
schemes. The algorithm is an iteration method which is based on the power method to ap-
proximate an eigenvector of the dominant eigenvalue of a matrix. The differential %ﬁ] I=1 18
calculated without any difference operation.

I. INTRODUCTION

For convolutional codes and trellis coded modulation (TCM) schemes, the theoretical bounds
of the event-error or bit-error probabilities can be represented by the transfer function (or
generating function) of the encoder state diagram. (For more details, see [1] for convolutional
codes and [2] for TCM schemes’.) For the sake of illustration, we consider a simple convolutional
encoder given in Fig. 1. The state diagram of this encoder is shown in Fig. 2 and the transfer
function 7'(D, I) is given by
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The event-error probability £, and the bit-error probability P, for rate b/n convolutional codes
are bounded above as follows.
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I=1,D=Z

where Z depends on channel noise. For the additive white Gaussian channel, these bounds are
tightened as follows.
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'In this paper, we use the same notation as [1].
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where £,/Ny is SN ratio per source symbol.

Since the number of states increases exponentially as the constraint length of a convolutional
code becomes long, it is hard to treat the transfer function symbolically. Hence the above
bounds are usually calculated numerically. In the numerical computation, the partial derivative
at I =1 is approximated as

8T (D, I) < T(Z,1+¢) - T(2,1)

bl
oI I=1,D=2% €

ek 1. (3)

On the other hand, (D) £ T(D, I )|1=1 can be obtained by solving the following state equations.

& = D2+€r

& = D&+ D¢y ' (4)
§a = D&+ D¢y

T(D):ngc ' (5)

where ¢’s represent the value of each internal node for the unity input in Fig. 2. Besides solving
the above equations directly, it is known that the solution can be obtained numerically by using
the series expansion of an inverse matrix [1, Prob. 4.18]. Let & 2 (&,¢c,84), b 2 (D?,0,0), and

[oD D :
A211 0 0 : (6)
0D D

Then, since (4) can be represented as &€ = €A + b, we have
€ = b(I-A)'=bI+A+A42+4+..)
n=¢

where S is defined as

: b, if£=0
st = { S-14, ¢=12... (8)
By truncating the summation of (7) properly, we can approximate the solution with adequate
accuracy. It is shown in [3] that the calculation time can be reduced by the series expansion
method compared to the direct calculation of (4).
The above series expansion method can be simplified by including the start node &, = 1 of
the state diagram into &. Redefine the vector £ as & 2 (&a,&py &, €4) and let

1 D* 0 0
Aaij0 0 DD
B= 01 0 0 (9)
0 0 DD
Then (4) can be represented as
£=¢B. (10)

This equation means that & is an eigenvector for the eigenvalue A = 1 of B. (Note from (9)
that B has A = 1.) Other eigenvalues depend on D. However, we can easily show that if the
absolute value of an eigenvalue is greater than one, T(D) becomes infinity. Hence, for the case
we are interested in, A = 1 is the dominant eigenvalue of B and we can use the power method
to get the eigenvector £ for A = 1 as follows. (See e.g. [4, Sec. 8.4] for the details of the power
method.)



Power Method for T(D)

1. (Initialization)
¢9 = (1,0,0,0), £:=0.

2. repeat
(a) £:=£+1.
(b) &Y =gV B,

until sufficient accuracy is achieved.
3. T(D) := D%,

Since matrix B becomes more sparse as the constraint length of the convolutional codes be-
comes longer, the above algorithm can be speeded up by implementing the calculation £~V B
element-wisely. In the next section, we will establish such algorithm to calculate T'(D). Further-
more, by modifying the algorithm, we will show in section 3 that 2 D D|;; can be calculated
without any difference operation.

II. ALGORITHM TO CALCULATE T(D)

For simplicity, we consider rate 1/n binary convolutional codes with constraint length K.
But the following algorithm can be easily generalized to any &/n convolutional codes or any
TCM schemes.

Let ug_1ux—2---usuy (ux € {0,1},k =1--- K —1) be contents of the K — 1 bits shift register
of a convolutional encoder and let uy be a new coming information bit. If the generator matrix
G of the encoder is

goa Jo2 ' Gon
G = 91.,1 91.,2 gl.,n, ’ (11)
gr-11 YR-12 ' GK-1in
then n encoder output bits, say vi,vs,- -, v,, are determined by
K-1
V=Y wgry, j=1,2,--,m. (12)

Furthermore the Hamming weight of the output bits (v;,vs,---,v,) can be obtained by

A
w(ug_1Ug-2 - Ukp) = Vi+ Vo F -+,
n K1

= g 2; UkGr.j- (13)

For this code, we represent each node in the state diagram as £,,_ u,_,.u,- SiNCE Uf_ UK _2

© up moves to ug.2---ujug at the mext clock, &u, ,u, ,.u, 18 connected to &,,. ..o and
Eun_ous1 N the state diagram, or in other words, &, _up_yu, 18 connected from oy yup s, and
E1ux ux_s-w - Let D be the label of a branch in the state diagram, which goes from &, R 2l
t0 €.\ yuiug- Since the superscript S of D% stands for the weight of the encoder output bits,
S is equal to w(up-1Ux_2 - urg). Hence, the power method algorithm shown in section 1 can
be described as follows.



Element-wise Power Method for T'(D)

1. {(Initialization)

(9,) := 1 and let other £9 ... ’s be zero.
80 UR 3l —p
= 0.
2. repeat
(a) £:=¢+ 1.

(b) §é-€~)-0 = ft(){fol)-
(c) fori:=1to 28! ~1do
Louggugg--ug = (i)5 L.
(&1 stands for the binary representation of 1 with K — 1 bits.)
it

{ o w{Ou g2t p g (4-1) wi{lty _gupg _3--t (£-1)
61(“\)»_2'u,;,»_3---n0 =D (Ouge—ruz—s-m éOuh +D (g —zurs sty élu,\ (14)

2K -3 ul 2UR 3l
until sufficient accuracy is achieved.
3. T(D) := D¥(000¢ 00 4.

This algorithm can be programmed without considering the state diagram if the generator
matrix G to calculate w{ug_1---ug) is given. Hence, we can easily write a general program, by
which we can calculate T'(D) for any 1/n convolutional code.

In the above algorithm, & converges rapidly if D is much less than one. But, the convergence
speed can further be improved by modifying the algorithm slightly. In (1 ) O g 18
updated by using fu;\ sy, HOWever, if Eu; sup_quy 18 alTeady updated, o can be
used instead of £~ Hence, (14) can be modified as

U Uiy

YR — luh -2t

67(4(;\)'72“1{-3'“’”0 = DW(UUI\ e é-OHIx —2UR -3t +Dw (R -zt U])é-hm —2UR -3 Uyt (15)
III. ALGORITHM TO CALCULATE ?I-g?il‘]_
The differential operation onD.I) is usually approximated by the difference operation (3).
ol |r—

%11_1 can be calculated without any difference

However, we will show in this section that
operation.
Consider a part of a state diagram shown in Fig. 3. Let T,(D, I} and T,(D, I) be the transfer

functions from the start node to nodes a and b, respectively. We define &,, &, (,, and (; as

& £ TuD, D), (16)
§b é H(D7I)II=1, (17)

A 8Ta(Da I)
o = ) 18

A 6Tb(D,I)
= 174 19
G o |, (19)

Then, &, and &, are related by

& = D%, (20)



which corresponds to the operation of (14). On the other hand, {, and ¢, are related as follows.

8Ty(D, I)
I |,
8(DSINT,(D, 1))
a1

G =

I=1

6Th
Il\ w + NDSTG(D, I)lI:l
I=1

= D%, + ND%,. (21)

The first term of (21) is the same formula as (20), which means that ¢ can be calculated in
the same way as £. The second term represents an additive term depending on N. In the case
of rate 1/b convolutional codes, N is determined by the new coming bit uy as follows.

_ 0, iqu=0
N“{ 1, ifuy=1. (22)

Hence, MTC,,?’—I)

can be obtained by the following algorithm.

‘Element-wise Power Method for T(D)|;—, and %20

T ar I=1
(Imtz'alizatz'on)
50 ‘0 *= 1 and let other fuh Jig_peu, S DE ZETO.
0
Let all Ci}}\?_lu}\,_z,“ul s be zero.
£:=0.
2. repeat
(a) L:=(+1.
¢ o1 (-1
(b) 5(()--)-0 = é---o), Co 0+ C 0)
(c) fori:=1to2%-1—-1do
1. UR QUK -3 Uy = (2)5‘“1
ii.
(Ot gt g —gere -1 S (1)
‘gg_zu;(_g""lto = DH’(OHI\ UK =S UI)g(()UK,_)z’ll.[;_g"-ul +Dw 1”’ -2 -aTh é‘gu;\ U _grrt]” (23)
jii.
gt _geuy ) A f—1 wllup yitp g 1
Cu}\ sug_gug = pwllug—sur-s U])C(gu,\ )2“-h sty +Du(1”‘ 2UK 3 ul)duk_)zuk_amm _
+u0[Dw GUI\ —HK-sn u”g((]ft},lgtu\ —3 +Dur(lu}"_zu’l\-_amul)gl(_fl;\'{)gll.]‘-_a.“ul].
| (24)
until sufficient accuracy is achieved.
3.
T(D) = D“1%"¢ 0.,
oT(D
E{ﬂ ) = puo-0)e .
I=1



which corresponds to the operation of (14). On the other hand, {, and ¢, are related as follows.

aTy(D, I)
I |,
DSINT,(D, 1))
a1

G =

I=1

OTy(D. I
Jl‘—b(a-fﬁ) + NDST,(D, I)|r-1
I=1

= D%¢, + ND%,. ' (21)

= D%

The first term of (21) is the same formula as (20), which means that ¢ can be calculated in
the same way as £&. The second term represents an additive term depending on N. In the case
of rate 1/b convolutional codes, N is determined by the new coming bit ug as follows.

. _ 0,‘ if Uo = 0
Hence, LT(&??“’QJ _, can be obtained by the following algorithm.

‘Element-wise Power Method for T(D)|;-, and 8—1%?—‘12 .

1. (Instialization)

0 . _
oot 1(Oz;md let other éuh Lo, S D€ ZETO.
Let all ¢, .., 's be zero.
£:=0.
2. repeat
(a) £:={€+1.
i-1)
(b) 8% == &7, ¢ = (8.
(c) fori:=1to 2% 1-1do
i Ug-aug—3 - ug = (2)F L
ii.
UK U3 U Ut —guy) o (£=1)
g‘&i\)'_wl,[{_g"-’ltg :=>D (O Kozif=sr 11)&011;\ othy —3-rit] +DLU1 fropfimsn 1§1U]\ QUp gy * (23)
iii.
WUy _»U 353U e—]- Uit g 35U (—1
C“A QUK 3 U = D (us-tc-s 1)4(()111\ )ZUI\ 3oty +D sz l)d‘ﬂvl{o)zllrkﬂ“'ll]
~1) o(Lug gt g -1
g [Dw (Oug —gup 3+ Ul)(;‘[(]uh - +DH(1 K-2UK -3 M)dux-)zu.]"_swux]'
(24)
until sufficient accuracy is achieved.
3.
T(D) = DM 0g.0,
or(D, I
59 - )| = pew-og,
I=1



In order to improve the convergence speed, we can use (15) instead of (23). Furthermore,
instead of (24), we can use

{) - w(Ouy g _g-uy) (£ w(luggup_guy) ~(€=1)
C;I\'—zltk—:s"'uo =D CO“A’—z”K—s'“”] +D Clul\'—'l“‘l\'—B"'“‘l
W(0Ug -y ttp —3e-tty ) ¢ (£) w(lup ity _gouy) o(€=1)
+UQ[D o2 fhs 15011.1(_211,1‘-_3---'111 +D fo2li=s 1)6111.[\'_2“.["43"'!1‘1]' (25)

III. CONCLUDING REMARKS

In this paper, we established the numerical calculation algorithm for the transfer function
bounds of convolutional codes. This algorithm was originally found and used to calculate theo-
retical bounds of error probability in [5] though it has not been published in any paper or report.
For simplicity, the algorithm was explained for rate 1/n convolutional codes in the foregoing
sections. However, the algorithm can easily be extended for any b/n convolutional codes. Fur-
thermore, the algorithm can be applied for the transfer function bounds of TCM schemes. If a
TCM scheme is uniform, then the algorithm can be applied straightforwardly. For a nonuniform
TCM scheme, the labels of state diagrams become matrices. Hence, by extending ¢ and ¢ of
each node to matrices, the algorithm can also be used for nonuniform TCM schemes.
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Figure 1: Encoder of a convolutional code.
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Figure 2: State diagram.
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Figure 3: A part of state diagram.



