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On the Hardness of Subset Sum Problem from Different Intervals

Jun KOGURE†a), Noboru KUNIHIRO††, Members, and Hirosuke YAMAMOTO††, Fellow

SUMMARY The subset sum problem, which is often called as the
knapsack problem, is known as an NP-hard problem, and there are sev-
eral cryptosystems based on the problem. Assuming an oracle for shortest
vector problem of lattice, the low-density attack algorithm by Lagarias and
Odlyzko and its variants solve the subset sum problem efficiently, when the
“density” of the given problem is smaller than some threshold. When we
define the density in the context of knapsack-type cryptosystems, weights
are usually assumed to be chosen uniformly at random from the same in-
terval. In this paper, we focus on general subset sum problems, where this
assumption may not hold. We assume that weights are chosen from differ-
ent intervals, and make analysis of the effect on the success probability of
above algorithms both theoretically and experimentally. Possible applica-
tion of our result in the context of knapsack cryptosystems is the security
analysis when we reduce the data size of public keys.
key words: subset sum problem, knapsack problem, low-density attack,
lattice reduction

1. Introduction

When a set of positive integers (weights) S =

{a1, . . . , an} (ai � aj) and a positive integer s are given, find-
ing a vector e = (e1, . . . , en) ∈ {0, 1}n satisfying

∑n
i=1 aiei =

s, is called the subset sum problem (or the knapsack prob-
lem), and is known as an NP-hard problem in general (see,
e.g., [4]). Lagarias-Odlyzko [8] and Brickell [1] indepen-
dently found an algorithm (LO algorithm, hereafter) that
solves subset sum problems, using lattice reduction algo-
rithm. Both methods almost always solve the problem in
polynomial time if we assume a shortest vector oracle of a
lattice and if the density of the subset sum problem is less
than 0.6463 . . . , where the density d is defined by

d = n/(log2 max
i

ai). (1)

Coster, Joux, LaMacchia, Odlyzko, Schnorr, and Stern
raised the critical density up to 0.9408 . . . (CJLOSS algo-
rithm, hereafter) [2]. They assumed that all ai’s are chosen
uniformly at random from an interval (0, A] for some integer
A, and the density was defined as

d = n/(log2 A). (2)

Since these algorithms are effective against subset sum
problems with relatively low densities, they are sometimes
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called the “low-density attack” in the context of breaking
knapsack-type cryptosystems. However, in general density
cases, the subset sum problem is still hard. In the LO al-
gorithm, the subset sum problem is reduced to the Shortest
Vector Problem (SVP) of a lattice constructed from the given
problem, and one or two SVP oracle calls are admitted. Al-
though no polynomial-time algorithms that solve Shortest
Vector problem are known, the polynomial-time algorithm
by Lenstra, Lenstra & Lovász (LLL algorithm) [7] solves
it with some approximation factor and works relatively bet-
ter in practice than in theory. One can also use the block
Korkine-Zolotarev(BKZ) algorithm [11] (as in [12]), which
provides better approximation factor but may not work in
polynomial-time, if its block length parameter gets larger.

There have been proposed several public key cryp-
tosystems whose security is based on the hardness of the
subset sum problem. For example, Chor-Rivest proposed a
cryptosystem that can use subset sum problems with rela-
tively high densities [3]. Though the system was attacked
by an algebraic approach [13], the attack may not be valid
in general cases. Okamoto-Tanaka-Uchiyama proposed an-
other cryptosystem OTU, in an attempt to resist adversaries
that can run quantum computers [10].

In these cryptosystems the Hamming weight of solu-
tions is bounded by βn for a small constant β ≤ 1/2. In
general cases, we can take β = 1/2. In cases β is relatively
small, Coster et al. [2] give improvements on their CJLOSS
algorithm, which we refer as CJLOSS+ algorithm in this
paper.

Our Motivation and Contributions:

In the context of knapsack-type cryptosystems, public key
ai’s are often generated by taking the value mod A for some
integer A. Hence it would be reasonable to adapt the follow-
ing assumption:

Assumption 1. ai’s are chosen uniformly at random from
the same interval (0, A].

In this case, the density can be defined as Eq. (2), and the
effectiveness of LO algorithm is well analyzed.

On the other hand, in general subset sum problems, this
assumption may not always hold and the effectiveness of LO
algorithm is not well known. In this paper, we focus on gen-
eral subset sum problems and analyze its hardness, mainly
from theoretical interests. As LO algorithm can be applied
to general subset sum problems and often works efficiently,
analyzing its effectiveness is very important in order to an-
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alyze the hardness of general subset sum problems. In gen-
eral cases, we are given ai’s without knowing from which
interval they are chosen. Given ai’s, we may adapt the fol-
lowing assumption:

Assumption 2. ai’s are chosen uniformly at random from
the same interval (0,maxi ai].

If we take this assumption, we can define the density as
Eq. (1). However, if the bit lengths of ai’s vary, this as-
sumption is not appropriate because the expected bit length
is around log2(maxi ai) − 1. Actually, even if we have same
maximum value of weights, i.e. same density, experiments
show different success probabilities of LO algorithm when
bit lengths of other weights vary. We will see this phe-
nomenon in the following section.

Another possible assumption will be:

Assumption 3. ai is chosen uniformly at random from the
interval (0, 2�log2 ai+1� − 1].

As the expected bit length of an integer that is chosen uni-
formly at random from the interval (0, 2m−1] is around m−1,
this assumption would be reasonable in some sense. In a
nutshell, this assumption means that small weight is chosen
from a small interval and large weight is chosen from a large
interval. Hence, in this paper we analyze the effectiveness
of LO algorithm when we adapt this assumption 3.

In general cases, efficient attacks might be possible by
decomposing the problem, but we focus on solving the prob-
lem by LO algorithm, as it can be applied in any case. We
introduce another density dHM under this assumption, and
see its validity as a criterion for the hardness of the subset
sum problem theoretically. We also make experiments of
solving subset sum problem changing the bit lengths of the
weights and make analysis of the effect on the success prob-
ability.

Possible application of our work in the context of
knapsack-type cryptosystems is the security analysis of the
system when we reduce the data size of public keys. If we
would like to reduce the total public key size in knapsack-
type cryptosystems, we need to have weights with shorter
bit length. In order to assure the security of such systems,
we need to analyze the hardness of general subset sum prob-
lems in our setting.

In Sect. 2 we briefly look over the previous works re-
garding as LO algorithm and its variants using lattice reduc-
tion, and consider changing the bit lengths of weights which
motivated our work. In Sect. 3, we assume that weights are
chosen from different intervals respectively, and present the-
oretical results in asymptotic case. We also look into non-
asymptotic case and analyze the success probability of LO
algorithm and its variants through experiments.

2. Previous Works and Concerns

In this section, we review LO algorithm by La-
garias and Odlyzko, and improvements by Coster et al.

(CJLOSS/CJLOSS+ algorithm).
Then we give our attentions to changing the bit lengths

of weights. We see the effect on the success probability
of CJLOSS+ algorithm, when we change the bit lengths of
weights.

2.1 LO Algorithm and its Variants

First we review the LO algorithm:

Input: a1, ..., an and s
Output: (e1, ..., en) ∈ {0, 1}n s.t.

∑n
i=1 aiei = s

Procedure:

N ← �√n

invoke a shortest vector oracle with the following basis:

b1 = (1, 0, ..., 0,Na1),
b2 = (0, 1, ..., 0,Na2),

...
bn = (0, 0, ..., 1,Nan),

bn+1 = (0, 0, ..., 0,Ns);
let (e′1, ..., e

′
n, e
′
n+1) be the return value;

if
∑n

i=1 ±aie′i = s and ±e′i ∈ {0, 1} for all 1 ≤ i ≤ n
and e′n+1 = 0
then output ±(e′1, ..., e

′
n) and halt;

else
output “not found”

end

Theorem 1 ([8]). Let A be a positive integer, and let
a1, . . . , an be random integers with 0 < ai ≤ A for 1 ≤
i ≤ n. Let e = (e1, . . . , en) ∈ {0, 1}n be arbitrary, and let
s =

∑n
i=1 eiai. If the density d < d0 = 0.6463 . . . , then

LO algorithm “almost always” solves the subset sum prob-
lem defined by a1, . . . , an and s, assuming a shortest vector
problem oracle.

As we would like to assume that the number of i’s such
that ei = 1 is less than or equal to n

2 , we actually execute the
procedure also for s′ = (

∑n
i=1 ai) − s.

In CJLOSS algorithm, N is replaced by � 1
2

√
n
, and

vector bn+1 is replaced by(
1
2
,

1
2
, ...,

1
2
,Ns

)
.

Checking if
∑n

i=1 ±aie′i = s and ±e′i ∈ {0, 1} is replaced by
checking if

∑n
i=1 ai(±e′i +

1
2 ) = s and e′i ∈ { 12 ,− 1

2 }, and the
output is replaced by (±e′1 +

1
2 , . . . ,±e′n +

1
2 ). We also have

the following theorem.

Theorem 2 ([2]). Let A be a positive integer, and let
a1, . . . , an be random integers with 0 < ai ≤ A for 1 ≤
i ≤ n. Let e = (e1, . . . , en) ∈ {0, 1}n be arbitrary, and let
s =

∑n
i=1 eiai. If the density d < d1 = 0.9408 . . . , then

CJLOSS algorithm “almost always” solves the subset sum
problem defined by a1, . . . , an and s, assuming a shortest
vector problem oracle.
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Table 1 Success probability of CJLOSS+ algorithm (in case the ratio of
two kinds of bit lengths varies).

No. of 40-bit ai’s No. of 60-bit ai’s Success(%)
60 0 60.0
59 1 72.3
55 5 85.1
50 10 88.0
45 15 98.0
40 20 100.0
35 25 100.0
30 30 99.9
25 35 99.7
20 40 100.0
15 45 100.0
10 50 100.0

5 55 99.9
0 60 100.0

In some cryptosystems such as the Chor-Rivest cryp-
tosystem, the Hamming weight k of solutions is bounded by
k = βn for a small constant β ≤ 1/2. Coster et al. remarked
further improvement (CJLOSS+ algorithm) in such cases.
In CJLOSS+ algorithm, N is replaced by �√β(1 − β)n
, and
vector bn+1 is replaced by

(β, β, ..., β,Ns).

Checking if
∑n

i=1 ±aie′i = s and ±e′i ∈ {0, 1} is replaced by
checking if

∑n
i=1 ai(±e′i + β) = s and e′i ∈ {±(1− β),±β}, and

the output is replaced by (±e′1 + β, . . . ,±e′n + β).

2.2 Changing Bit Lengths of Weights

In the definition of the density (1), it is determined only
by the maximum value of given weights if the number n
of weights is fixed.

d = n/(log2 max
i

ai).

Even if the maximum value of weights is fixed, changing the
bit lengths of other weights may effect the success probabil-
ity of LO algorithms and its variants. We see this through
experiments.

First, we take n = 60 and the Hamming weight k of
the solution is 6. We take ai’s of bit length 60 or 40, change
their ratio, and run CJLOSS+ algorithm 1000 times for each
ratio. When we fix the ratio, we choose different sets of ai’s
1000 times without changing the ratio. As a lattice reduction
algorithm, we use block Korkine-Zolotarev algorithm with
block length 20. Table 1 shows the success probability of
CJLOSS+ algorithm in percentage. Though the density of
ai’s are almost 1 except the top row of the table, success
probability varies.

We see another pattern of weights where bit lengths are
uniformly distributed. The numbers in the left column of Ta-
ble 2 represents the number n of weights. The numbers in
the first row represents the bit length m of ai’s. “71 − 80”
means that bit lengths are uniformly distributed from 71
to 80, i.e. there are 7 or 8 ai’s for each bit length. Other
numbers in the table represent the success probability of

Table 2 Success probability of CJLOSS+ algorithm (in case bit lengths
of weights vary).

m = 71 71-80 74 80
n = 70 95.0 98.5 98.8 99.9

80 36.2 51.1 44.6 58.8

CJLOSS+ algorithm in percentage, when we run the algo-
rithm 1000 times, generating n random weights of bit length
m for each time. As a lattice reduction algorithm, we use
block Korkine-Zolotarev algorithm with block length 20.
The column of bit length m = 71 − 80 and the column of
bit length m = 80 in Table 2 has almost the same density
according to the definition (1), as the maximum bit length
m of weights is 80. Even though they have almost the same
density, the success probability gets smaller for m = 71−80.

These phenomena indicate that the definition (1) of the
density may not be fully appropriate.

3. Analysis in Case Weights are Chosen from Different
Intervals

In previous works, it is assumed that weights are chosen
from a unique interval. In this section we assume that they
are chosen from different intervals respectively, and we de-
scribe our theoretical and experimental analysis in that case.

3.1 Theoretical Results in Asymptotic Case

Theorem 3. Let e = (e1, . . . , en) � (0, . . . , 0) ∈ {0, 1}n be
fixed. Let A1, . . . , An be positive integers and a1, . . . , an be
integers chosen uniformly and independently at random with
0 < ai ≤ Ai for 1 ≤ i ≤ n. Let s =

∑n
i=1 eiai, and let L be a

lattice spanned by the following basis:

b1 = (1, 0, . . . , 0,Na1),

b2 = (0, 1, . . . , 0,Na2),
...

bn = (0, 0, . . . , 1,Nan),

bn+1 = (0, 0, . . . , 0,Ns),

where N is a positive integer larger than
√

n. Let δ(u0) be
the minimum value of the following function of u ∈ R+:

δ(u) =
1
2

u + ln θ(e−u), θ(z) = 1 + 2
∞∑
j=1

z j2 ,

and let c0 denote (log2 e)δ(u0).
Then the probability P that the shortest vector in L is

not equal to ê = (e1, . . . , en, 0) is less than

(2n
√

n/2 + 1)2c0n
n∑

i=1

1
Ai
.

Note that the critical density d0 = 0.6463 . . . in LO
algorithm case coincides with 1

c0
in above statement [9].

Proof. Let t =
∑n

i=1 ai. We may assume that
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1
n

t ≤ s ≤ n − 1
n

t,

because otherwise any ai ≥ t/n may be removed from con-
sideration. The vector ê = (e1, . . . , en, 0) is contained in L.
We should consider the probability that there exists a vector
x̂ = (x1, . . . , xn, xn+1) satisfying the following conditions:

||x̂|| ≤ ||ê||, x̂ ∈ L, x̂ � {0,±ê}, (3)

where ||x|| represents Euclidean norm of x. Then x̂ satisfies
the condition (3) only when xn+1 = 0, because otherwise we
have ||x̂|| ≥ |xn+1| ≥ N >

√
n ≥ ||ê|| which contradicts the

condition (3). Hence we have some integer y that satisfies

ys =
n∑

i=1

xiai.

Then

|y| ≤ n
√

n/2

holds, because

|y|s =
∣∣∣∣

n∑
i=1

xiai

∣∣∣∣ ≤ ||x̂||
∣∣∣∣

n∑
i=1

ai

∣∣∣∣ = ||x̂||t,
and without loss of generality we may assume that ||e|| ≤
n/2. Let x denote x = (x1, . . . , xn), and zi = xi − yei. Then
we have

P ≤ #{x ∈ Zn | ‖ x ‖≤‖ e ‖} · #{y ∈ Z | | y |≤ n
√

n/2}

× Pr

⎡⎢⎢⎢⎢⎢⎣
n∑

i=1

aizi = 0

⎤⎥⎥⎥⎥⎥⎦ . (4)

From Lemma 1 in [9], the first term of (4) is bounded by
2(log2 e)δ(u)n for any u ∈ R+. From Theorem 1 in [9], there
exists some value u0 ∈ R+ such that δ(u) has its minimum
value at u = u0. Writing (log2 e)δ(u0) as c0, the first term of
(4) is bounded by 2c0n. When zn = zn−1 = . . . = zi+1 = 0 and
zi � 0, let z′ denote z′ = − 1

zi

∑i−1
j=1 ajz j, then

Pr

⎡⎢⎢⎢⎢⎢⎢⎣
n∑

j=1

ajz j = 0 | zn = zn−1 = . . . = zi+1 = 0, zi � 0

⎤⎥⎥⎥⎥⎥⎥⎦
= Pr[ai = z′ | zn = zn−1 = . . . = zi+1 = 0, zi � 0]

=

Ai∑
l=1

Pr[ai = l]

× Pr[z′ = l | zn = zn−1 = . . . = zi+1 = 0, zi � 0]

=
1
Ai

Ai∑
l=1

Pr[z′ = l | zn = zn−1 = . . . = zi+1 = 0, zi � 0]

≤ 1
Ai
.

Hence we can estimate the last term of (4) by

Pr

⎡⎢⎢⎢⎢⎢⎢⎣
n∑

j=1

ajz j = 0

⎤⎥⎥⎥⎥⎥⎥⎦

=

n∑
i=1

Pr[zn = zn−1 = . . . = zi+1 = 0, zi � 0]

× Pr[ai = z′ | zn = zn−1 = . . . = zi+1 = 0, zi � 0]

≤
n∑

i=1

Pr[zn = zn−1 = . . . = zi+1 = 0, zi � 0]
1
Ai

(5)

≤
n∑

i=1

1
Ai
.

�

Corollary 1. Let HM(A1, . . . , An) denote the harmonic
mean of A1, . . . , An, i.e.

HM(A1, . . . , An) =
1

1
A1
+···+ 1

An

n

.

If for some c > c0,

lim
n→∞

log2 HM(A1, . . . , An)
n

= c,

then

P→ 0 (n→ ∞).

Proof. From Theorem 3, we have

lim
n→∞ P ≤ lim

n→∞
n(2n

√
n/2 + 1)2c0n

HM(A1, . . . , An)
= 0.

�

Above Corollary 1 indicates that in case we choose ai’s from
different periods A1, . . . , An, we may use another indicator
as its density:

dHM =
n

log2 HM(A1, . . . , An)
. (6)

If we assume an SVP oracle of lattice, we can asymptot-
ically solve the subset sum problem when dHM is smaller
than the critical density d0 = 0.6463 . . . .

The reason why harmonic mean of Ai’s appears here is
as follows. In the inequality (4) of theorem 3, we bound the
third term Pr

[∑n
i=1 aizi = 0

]
by

∑n
i=1

1
Ai

. In theorem 2, the
corresponding term is bounded by n

A . If we represent

n∑
i=1

1
Ai
=

n
A′

for some A′ and replace A in the definition of usual density
(2) with A′ in our case, we are able to prove our statement.
From above equation, A′ coincides with the harmonic mean
of Ai’s. Hence dHM can be regarded as a natural extension
of usual density d, and if all Ai’s are the same value A, dHM

coincides with d.
Further, we may combine this density with Kunihiro’s

density [6]
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D =
nH( k

n )

log2 A
,

where H is the binary Entropy function H(x) = −x log x −
(1 − x) log(1 − x), and k is the Hamming weight of the solu-
tion:

DHM =
nH( k

n )

log2 HM(A1, . . . , An)
.

In the case of CJLOSS algorithm, we similarly have
following results:

Theorem 4. Let e = (e1, . . . , en) � (0, . . . , 0) ∈ {0, 1}n be
fixed. Let A1, . . . , An be positive integers and a1, . . . , an be
integers chosen uniformly and independently at random with
0 < ai ≤ Ai for 1 ≤ i ≤ n. Let s =

∑n
i=1 eiai, and let L be a

lattice spanned by the following basis:

b1 = (1, 0, . . . , 0,Na1),

b2 = (0, 1, . . . , 0,Na2),
...

bn = (0, 0, . . . , 1,Nan),

b′n+1 = (
1
2
,

1
2
, . . . ,

1
2
,Ns),

where N is a positive integer larger than 1
2

√
n. Let δ 1

2
(u1)

be the minimum value of the following function of u ∈ R+:

δ 1
2
(u) =

1
4

u + ln θ(e−u), θ(z) = 1 + 2
∞∑
j=1

z j2 ,

and let c1 denote (log2 e)δ 1
2
(u1).

Then the probability P that the shortest vector in L is
not equal to ê′ = (e1 − 1

2 , . . . , en − 1
2 , 0) is less than

(4n
√

n + 1)2c1n
n∑

i=1

1
Ai
.

Note that the critical density d1 = 0.9408 . . . in CJLOSS al-
gorithm case coincides with 1

c1
in above statement (Theorem

3.1 in [2]).

Corollary 2. Let HM(A1, . . . , An) denote the harmonic
mean of A1, . . . , An. If for some c > c1,

lim
n→∞

log2 HM(A1, . . . , An)
n

= c,

then

P→ 0 (n→ ∞).

In case of CJLOSS+ algorithm, we use the following
function δβ(u) of u ∈ R+ (Theorem 3.1 in [5]):

δβ(u) = β(1 − β)u + ln θ(e−u), θ(z) = 1 + 2
∞∑
j=1

z j2 .

If we set β = 1
2 , this function coincides with δ 1

2
(u) in theo-

rem 4.

3.2 In Non-asymptotic Case

In Sect. 2.2, we saw the success probability of CJLOSS+
algorithm when bit lengths of weights are uniformly dis-
tributed from 71 to 80. According to definition (1), the den-
sity d ≈ 80

80 = 1 in this case, but the success probability is
smaller than the case where all weights have 80 bit length
and the density is almost 1 also. According to our definition
of density (6),

dHM ≈ 80
74

in the case weights are uniformly distributed from 71 to 80,
and its success probability is closer to the case where all
weights have bit length 74 and dHM ≈ 80

74 , than the case all
weights have bit length 80 and dHM ≈ 80

80 = 1. This may be
rather an ideal case, and in general non-asymptotic case, we
need minute examination of the inequality (5) in the proof
of Theorem 3. Let Pi denote the probability Pr[zn = zn−1 =

. . . = zi+1 = 0, zi � 0]. In the proof, we bounded each
term Pi

1
Ai

with 1
Ai

in an asymptotic case. However, when we
deal with concrete subset sum problems where n is a fixed
value, we should rather analyze the coefficients Pi minutely.
For example, if the range of the distribution of bit lengths is
wide, the value of 1

ai
for smaller ai will get far greater than

that of larger ai, hence the harmonic mean of ai’s will lean
to smaller ai and the effect of larger ai in the indicator dHM

might get smaller than its actual effect.
Another factor we have to consider is the approximate

factor of the actual lattice reduction algorithms. However,
as the running time grows exponentially if we use the ex-
act algorithms, considering this effect is a difficult task in
analyzing results of actual experiments.

3.3 Application in the Context of Knapsack Cryptosys-
tems

Possible application of our work in the context of knapsack-
type cryptosystems is to use it in the security analysis of the
system when we reduce the data size of public keys. If we
would like to reduce the total public key size in knapsack-
type cryptosystems, we need to have weights with shorter bit
lengths. For example, if we have 80 public key weights with
80-bit each, total public key size is 6400 bits. If we have 80
weights with bit lengths between 61 to 80, 4 keys for each
bit length, total public key size is 5640 bits, reducing 11.9%
of public key data size. In order to assure the security of the
system, we need to analyze the hardness of general subset
sum problems in our setting.

4. Concluding Remarks

In this paper, we considered the hardness of general subset
sum problems against LO algorithm and its variants, with
an assumption that weights are chosen from different inter-
vals respectively. In asymptotic case, we introduced another
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density that works as an criterion for the success probabil-
ities of LO algorithm and its variants, and obtained some
theoretical results. In non-asymptotic case, we saw the ef-
fectiveness and concerns of our new density through con-
crete experiments. Possible application of our result in the
context of knapsack cryptosystems is the security analysis
when we reduce the data size of public keys.

Our future work will be to get tighter bounds for the
success probability of LO algorithm and its variants, which
will be useful for estimating the hardness of general subset
sum problems more precisely.
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