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SUMMARY

In the (k, n) threshold scheme, the in-
formation X is partitioned and coded into
subinformation. If any k subinformation is
obtained among 7 subinformation, the original
information X can be recovered completely.
However, no information can be obtained at
all concerning X from any (k - 1) subinfor-
mation. Thus, the (k, n) threshold scheme
is suited to the distributed storage or
transmission of information. On the other
hand, each subinformation requires the same
number of bits as the original information X,
which is very inefficient from the viewpoint
of the coding efficiency. This paper ex-
tends the (k, n) threshold scheme and pro-
poses the (k, L, n) threshold scheme. In
the proposed scheme, the original informa-
tion can be recovered completely from any
k subinformation, but no information concern-
ing X is obtained at all from any (k - L)
subinformation. From any (k - t) subinforma-
tion (1 £ £ £ L - 1), the information ob-
tained for X contains the ambiguity of (#/L)
H(X). 1In (k, L, n) scheme, the bit~length
of each subinformation is 1/L of the informa-
tion X, which is a coding with very high
efficiency. This paper presents a construc-
tion method for (k, L, n) threshold scheme,
together with the discussion of its charac-
teristics.

1. Introduction

As a method to protect the information
from an illegal listener, the (k, n) thres-
hold scheme was proposed by Shamir [1].
Recently, numerous studies have been made
on its realization and applications [2 ~ 117.
The (k, n) threshold scheme is a method in
which the information XV is partitioned and
coded into »n subinformation to be stored or
transmitted. The secret protection ability
is as follows. If k subinformation among
n subinformation is obtained, the informa-
tion X can be recovered completely, while
no information concerning ¥V can be ob-
tained from any (k, 1) subinformation.
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Thus, when the (k, n) threshold scheme
is employed, the information concerning XV
is not betrayed, even if up to (k - 1) sub-
information is revealed. Even if up to (n -
k) subinformation is destroyed, XN can be
recovered completely. Consequently, it is
suited to the distributed storage of the
secret key and the transmission of secret
information utilizing more than one path.
On the other hand, each subinformation in
the (k, n) threshold scheme requires the same
bit-length as the original information XNV [3]
which is very inefficient from the viewpoint
of the coding efficiency.

This paper proposes the (k, L, n)
threshold scheme, which is an extension
the (k, n) threshold scheme, presenting
coding for its realization. In the (k,
n) scheme, the original information can be
recovered completely, if any Xk out of m sub-
information is obtained, but no information
can be obtained at all concerning XV from
any (kK - L) subinformation. If any (k - %)
subinformation is obtained (1 £ ¢ £ [ -~ 1),
the information concerning XN is obtained to
some extent with the decrease of n.

of
the
L,

Using the (k, L, n) scheme, each sub-
information requires the bit-~length of 1/L
compared with the original information XV,
which is a great improvement over the (k, n)
scheme. For example, consider the case
where # = 10 and the threshold is to be set
approximately half of n. Using the (6, 2,
10) threshold scheme, the bit~length of the
subinformation can be halved compared with
the (5, 10) or (6, 10) threshold scheme,
while realizing the similar extent of secret
protection characteristics.

In Sect. 2, the (k, L, n) code is de-
fined as the code realizing the (k, L, »)
threshold scheme, discussing its character—~
istics. Section 3 presents the construction
method for the (k, L, n) code, applying the
coding by Karmin et al. [3] which realizes
the (k, n) threshold scheme. The secret
protection performance is evaluated as in
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the past (k, n) threshold scheme, by the
entropy function, assuming that .the informa-
tion source is a memoryless uniform proba-
bility source. Section 4 shows that the (k,
L, n) code can be realized using the residue
operation modulo 2M, which is suited to the
general-purpose computer.

Reference [12] presented a coding theo-~
rem for the more general case for n = 2 and
3, where the output symbols of the informa-
tion source are not of uniform probability.
Reference [5] presented an extended (k, n)
threshold scheme using the Stone code [13],
which is essentially equivalent to the (k,

L, n) threshold scheme from the viewpoint

of code construction. The difference is that
the extension in [5] is made aiming primar-
ily at the error correction.

2. (k, L, n) Threshold Scheme and (k, L, n)

Code

Consider a discrete memoryless informa-—

tion source, where the output Xj (j = 0, #1,
+2, +++) takes the values of a finite dis-
crete set . The number of elements in & is
denoted by ¥l = ¢, where g is assumed for
simplicity, as a prime number or its power.
The symbols of ' are assumed to occur with
uniform probability. In other words, the
following condition is satisfied by the in-

formation source for J = 0, 1, %2, cee;
rl Ay i q ’ L Ly -y » ’
n
H(X;)=1loggqg (2)
For this information source, the code
(k, n) is defined as follows, where N = ml
(L £ L 2 k):
foelh— Al 27y 3
]=1
¢: For any tuple of k of Wjm,
f N
oy —x (4)
(=1 7t

In other words, (Wim, Wom, <<+, Wym) = f(XN)*,
and for any tuple of k subinformation

(simply called code words in the following)
(Wjim, Wjom, «««, Wjkm), there holds XN =
Wgim, Wjzm, «<<, Wjkm). Each symbol Wj;

*The vector in this paper is always a
row vector.
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(=1, 2, =<«, n) of the code word Wgm
= (le’ sz’ MY ij)’ j =1, 2, +«+,
takes the value in the set Wj, where Iﬂylz=q

By Eq. (3), the efficiency Rj of the
code word Wjm (j =1, 2, «+«, n) is the same
and is given by

(5)

The secret protection ability is evaluated
based on the following (k, L, n) threshold
condition.

Condition 1. For ¢ in the range 0
2t £ L, any tuple of (kK - t) code words
(Wjim, Wiam, «.., Wjk-¢M) satisfies the fol-
lowing relation:

N m m . m =£ N
[I(X |W}'1;W/}’2i "VJ);-t) LII(X )

=tm loggq (6)
Condition 2. For ¢ in the range 1
2t 2 L, any tuple of (k - t) code words
(Wjim, Wjom, e, Wik-tM) and any t tuple
(Xs1My XgoMm, =<+, XggM) out of XN = (Xym,
Xom, se«e, XiMm) satisfy the following rela-
tion:
[{(X;ll y X,;nz y Ty X;-"t | u/}n‘z ’ W;’; y Ty u{;’:—i )
=%I:I(X"’) =¢tmloggqg N

The code satisfying the condition 1
(f, ¢) is called (k, L, n) code. The (k,
L, n) code satisfying both conditions 1 and
2 is called the strong (k, L, n) code and
the (k, I, n) code satisfying only condition
1 is called the weak (k, L, n) code.

Note 1. It is seen by setting ¢ = 0
in Eq. (6) that XV can be recovered com-
pletely from any kX code words by using the
(k, L, n) code. It is also seen by setting
t = L that no information at all can be ob~-
tained concerning XV from any (k - ) code
words.

Note 2. The (k, 1, n) code which is
the case of L = 1, is the k-out-of-n code
[3], realizing the (k, #n) threshold scheme.

Note 3. It is seen from Eq. (5), that
the code efficiency is better as [ is in-
creased, which represents the threshold of
the secret protection performance.

As an example, compare the (k, 1, »n)
code (C1), (k - 1, 1, n) code (C2) and (k,
2, n) code (C3) for g = 2 and N = 100.



(number of bits in code word)
¢, : 100 Cy, 1 100 Cy 150

(secret protection ability): ambiguity H{XI)

number of code words being k or more:

cy o1 ¢, 1 1 C, 1

number of code words being k -~ 1:

C, : 2™ (=~10%) ¢, : 1 Cy @ 2°°(=~=107%)
number of code words being k - 2 or
less:

Cl . 2100 CZ . 2100 C‘% v: 2100

As is seen from the above example,
when n >> L, the (k, L, n) threshold scheme
can decrease the length of the code word
to 1/L, while maintaining the similar degree
of secret protection ability as that of the
(k, n) threshold scheme. As in the above ex-
ample, when the ambiguity of the order of
250 is sufficient for secret protection,
the (k, 2, n) code has essentially the same
secret protection ability as that of the (%,
1, n) code. In other words, when qlV/L is suf-
ficiently large, the (k, L, n) threshold
scheme can realize essentially the same
secret protection ability as that of the (X%,
n) threshold scheme by 1/L code word length.

Note 4. In the weak (k, L, n) code,
there is a possibility that a part of XV can
be recovered completely from (k - %) code
words where t < L. 1In the strong (k, L, n)
code, the ambiguity of (¢/L)H(XN) is main-
tained for any part of XV, as is seen from
Eq. (7). Consequently, the strong (k, L, n)
code is more desirable than the weak (k, L,
n) code. However, in the case where XV does
not have a meaning unless all of its infor-
mation is recovered, the weak (k, L, n) code
suffices.

It is then shown in the following that
the above (k, L, n) code is the optimum in
the sense that the code (f, ¢) cannot achieve
a larger ambiguity than Eqs. (6) and (7).

Theorem 1. If a code (f, ¢) satisfies
Eq. (6) for ¢ = 0, any tuple of (k — %) code
words (Wjim, Wjom, =+, Wjk-tMm) satisfies
the following relation for 1 £ ¢ £ L:

HXMWER W = W) < (/LN

)

Proof. The following relation applies
for t in 1 £t £ L:

: 4 moo... W™

HOXVTW Wi W)

o N m mo ... WM
OO W W)
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W WL W)
ZH (X", Wr, W
SR W W)
SHOWS AW W W)
= (XN WP, W e W)

Jk—t—1

T W/J!Z-—z—l)

—H (W VW W W)
N moo... -~
SHXM WP, W W )= H (W)
N s ) -
>H(X lW;’: , W]"; , , W;:—t—l) m loggq (€))
Consequently, if
N my ——
H(XMIWr, W, e W) =0 (10)

the following relation holds for ¢ in 1
2t 2L

N yn ... rm
O, W W)

<:H(z¥Nl“Cm,}me “',‘V”)4—tmlogq
- 1 J2 Jk (11)
=tmlogq=(t/L)U(XN)
N (End of Proof.)
It is obvious from Eq. (8) that
B, X7y, XE VW W2 e W)

< (¢/L)m(x") (12)

also holds for the condition 2.

3. Construction of (k, L, n) Code

The k-out-of-n code encoding I infor-
mation at the same time [3] can be utilized
in the construction of the strong (k, L, n)
code.* Consider the following code. Let
As (8 = 1, 2, *++, L) and Bj G =1, 2, *=°,
n) be km x km matrices on GF(g). For given
XN = (XM, Xom, ««+, X1m), the km-dimensional
vector UKm is determined at random, satisfy=-
ing

Xr=U*4q,, s=1,2,,L (13)

Then the code word Wjm is determined
by
u]]m=UkmBj’ ]‘zl ,2,"'7‘L (14)

The matrices 4g (8 = 1, 2, +++, L) and Bj

(j =1, 2, »+*, n) are made public. Letting
G=[ Ay, Az, , Apy By, Bz, B, ] (15)
One can write that
(XT’ Xgi'“! %’ WTH W?a"',WT)::Uka
(16)

*Reference [3] showed that the condi-

. tions 1 and 2 are satisfied when ¢ = 0 and

t = 1.



This is called the UG code. The following
theorem applies to the UG code.

Theorem 2. The necessary and suffi-
cient condition for the UG code to be a
strong (k, L, n) code is that any k matrices
{Cj1, Cj2, *++, Cjk} chosen from {A1, A2,
wee, AL, Bl, B2, +s++, Bn} satisfy
rank [ C; , C;

"”;C)k]:k’” (17)

2z
The necessary and sufficient condition for
UG code to be a weak (k, L, m) code is that
any k matrices {Bjl, Bj2, ***» Bjk} chosen
from {B1, B2, *+*+, Bn} satisfy

(18)

rank‘:le ’ B]' ) ST Bj‘k'j-_"km

2

and any k - L matrices {Bjl, Bj2, ***, Bjk-Ll
chosen from {B1, B2, ***, Bn} satisfy

rank[Aer21”' yALr BJ‘I,B}z,”' ’B]kngzkm (19)

Proof. It is shown first that the
condition 1 holds when Eqs. (18) and (19) are
satisfied. Since any k matrices {Bj1, Bj2,

, Bik} satisfy Eq. (18), vkm is deter-
mined by

km m mo .. m . . -1
‘Um—EVV]\’W,Jz' 'u/Jk][BIx’sz’ ’Bz’k]

. (20)
and XV is determined by Eq. (13). Conse-
quently, Eq. (6) applies for ¢ = O.

Then consider the case of 1 5 ¢ 2 k.
The number of Ukm satisfying Eq. (13) is
q(k-Lym for each 2V ¢¥V, which are chosen
at random with uniform probability. Conse-
quently,

H(U“’”lX"')———ZNP,(.rN)H(U’”‘l xV)= (k- L)mlogg

Since XV is determined uniquely from Ukm by
Eq. (13),

HU)y = (UmX")=H(X") +H (U1 XY)
=] (X")+ (k= L)mlogg
(21)

From the forementioned relation, the follow-
ing is obtained:

(XN Iwe W e W)

Jk—t
21X U W W)
= km ym mn coe m
=i (UL, W 'WJH) L
_ fen N m moo.. '
Hukm x¥, wr W, e, W)
=] km‘ n e
(x1) =H (U WP, WE e W)
» kot (22)
Sty - L (W)
$=1 §
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>HU) - (£—¢)Imlogg
(%2) ZH(XN) +(L-t)mlogg

=¢tmlogyq

=(¢/LYH(X")

where (*1) is due to Eq.
due to Eq. (21).
Eqs. (8) and (22).

(18) and (*2) is
Equation (6) follows from

Similarly, the following relatiom ap-
plies when Eq. (17) is satisfied:

H(X;"‘ VX7, ,X;nt \wr, WJ”; T “/}r:‘t)
> I(XR,Xp o XD U W W W)
=1 (UF W, W, ijz-t)

SIS, X e KWW W)

(x3) =H (U IW™ W, W)

> tmloggqg
=(¢/L)H(XY)
(23)

where (%3) is due to Eq. (17) and Eq. (7)

follows from Eqs. (12) and (23).

Conversely, the following can easily
be shown when Eqs. (18) and (19) do not ap~
ply, there exists (Wj1m, Wjam, <=+, W5 k—-tmy
which does not satisfy Eq. (6). When Eq.
(17) does not apply, there exists (Xg1m,
XgoM, =++, Xg4M) which does not satisfy
Eq. (7). (End of Proof.)

The following theorem holds concern-
ing the choice of matrices {47, 4, -+, 41,
B, B2, **°, Bk_[/}-

Theorem 3.
one can write

Without loss of generality,

0 0,
: s—1 L+ ;-1
0, 0,
A= 1, , B, =|1I,
0, 0,
20, L 0, |
s=1,2, , L gJ=1,2,, kL (24)

where Op is the m x m zero matrix, and Im is
the m x m unit matrix.

Proof. Omitted (it is the same as
that of Theorem 3 in [3]).

It follows from Theorem 3 that ykm can
be written as Ukm = (Xim, Xom, «-+, Xpn, Zim,

N




Zom, «e=, ZK-IM), where 257, 1 =1, 2, ***,
m of ij = (Zjl’ ZjZ’ LY ij)’ j = 19 2,
vee, k = L) is a uniform random variable on
GF(q). It is seen from Theorem 2 that it
suffices to determine the (k, L, n) code,
that the tuple of matrices {4y, 42, +=*-, 4L,
Bi, B2, *++, By) satisfying Eq. (17) or (18),
(19) be determined. Given k, L, g and m,
let the maximum possible value of 7 be #max.
Then by Theorem &4 in [3], nmax satisfies the
following theorem concerning the strong (k,
L, n) code.

Theorem 4. When a strong (k, L, n)
code is constructed using UG code, #max
satisfies the following relations:

if g" >k, g LA 1y g b~ L= 1
(25)
if " <k, n,max:k—-L%*l (26)

Proof. Omitted (it is obvious from
Theorem 4 in [3]).

The lower bound for nmax given by Eq.
(26) can be achieved by determining G = [41,
A2, v, AL; Bl’ B2, =, Bn] as in Eq-
(27) ,* where m is set as I. When m > 1, BIm
can be used instead of each element B (= O,
1, a, a2, »=+, ag-1) in Eq. (27); o is a
primitive element of GF(g):

1 0 1 1 remreeeeenes 1
00« QF e 2?7

G=|0 0 af @t ereneeees glam 1z 27)
0 1 af! 2% D ..., (97 1) =)

The following bound exists for the
weak (k, L, n) ccde.

Theorem 5. When a weak (k, L, »)
code is constructed using the UG code, "max
satisfies the following relation:

L=k,
if ‘7m>k! qm4“1_<_nmax Sqm+k7 1 (28)
if "<k, Nax =k 4 1 (29)
L=k—-1,
if qm'>/€, qmgnmaxgqm‘{_k_l (30)

*The UG code which can be constructed
by Eq. (27) includes the code by Shamir [1]
by polynomial interpolation [3, 6].

"<k,
if g2 nax = k1 (31)
if g™=2,and £ is odd Momay = &+ 1 (32)
if q™=2 and k is even Nnax = (33)
1<<L<<k-1,
if g >k, qT A1, SgTHE—1 (34)

i h-1<qr<k, h<ng,<k+1 (35

max —

if max (L, k- L)<q"<k=1,n_, <k+1 (36)

if g"<max (L,k— L), there does not
. exist

L=1,
if qm"/\‘/‘: qm+]'gnmaxgqm+k~'l (37)

if qr ks P =k (38)

Proof. It is shown in the Appendix.

4. (k, L, n) Code and Pseudo (k, L, n) Code
by Residue Operation Modulo 2

The (k, L, n) code can be constructed
using Eq. (27) and matrices of Eqs. (A3)
to (A9). However, the operations must al-
ways be made on GF(g), which is fairly
complicated when N is large. In the (k, L,
n) code, »Ck decoders must be prepared, and
consequently, it is desirable that the en-
coding and decoding operations should be as
simple as possible.

From such a viewpoint, this section
discusses the construction of (k, L, n) code
using only the residue operation modulo 2/
which is practically important and can easily
be calculated by the general purpose com—
puter. It is set in the following that m
= 1 for simplicity. The reasoning for the
case of m > 1 is similar.

As an example, consider the simplest

case of (2, 1, 2) code, i.e., 2-out-of-2
code, By Theorems 3 and 4, the matrix G is

set as
101
G=[ } (39)
011

and U = (X, Z) can be used as U. The in-
formation X is X € GF(2M) and 7 is a uni-
form random variable on GF(2M). Then the
coding is made as follows:

W, =27 (40)
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Wy, =X+7 (41)
where "+" is the addition on GF(2¥). The de-
coding is made by

X=I, — IV, (42)
where "-" is the subtraction on GF(2M),

As is seen in this example, only addi-
tions and subtractions are used when the
matrix G is composed only of elements {0, 1}.
Thus, the additive group suffices, not the
field. Using the residue operation modulo

2M, which composes an additive group, the (2,.

1, 2) code can be constructed as follows
where X, 2 e5 oy 8 {0, 1, 2, <+, 20 - 1}
and Z is a uniform random variable on i

7 = (43)
encoding: { P

W,=(X+Z)mod2 (44)
decoding: Xe=(IF, =17, ) mod oM (45)

For a strong or weak (k, L, n) code to exist
by the residue operation modulo 2¥, it suf-
fices that there exists a matrix & satisfy-
ing Eq. (17), (18), or (19) on GF(2).

For the strong (k, L, n) code, there
must hold

k< npax=k—L+1 (46)
by Eq. (26) of Theorem 4. Consequently, the
code exists when

n=+k, L=1 (47)

By Theorem 5, the weak (k, L, n) code exists
for the following cases:

if L=1, 2<k, n=k (48)

if L=k—11is even, n=4k ,k+1 (49)
if L=k-11is odd, n==k (50)
if L=k>2,n=k,k+1 (51)

Thus, for (k, L, n) satisfying Eqs.
(47) to (51), the (k, L, n) code can be
constructed by the residue operation modulo
2M,  For other combinations of (k, L, n),
the construction of the (k, L, n) code by
residue operation modulo 2/ may be impos—
sible. For (k, L, n) other than those
satisfying Egs. (47) to (51), however, the
code which almost satisfies the condition
for the (k, L, n) code can be constructed
as follows, using the residue operation
modulo 2

When a residue operation modulo 2¥ is
performed, the inverse to the multiplication

51

cannot be determined uniquely.
when a, c¢( €5 9M) are given in

However,

e+ b mod 2M=c (52)
the number of b's satisfying Eq. (52) is a
or lesgs. Using a matrix G which has ele-~
ments other than {0, 1}, as small natural
numbers as possible and satisfies Eq. (17),
(18) or (19), it is expected that a code
which almost satisfies the condition for the
(k, L, n) code fi.e., Eq. (6) or (7)) can

be constructed by using the residue opera-
tion modulo 2/,

As an example, consider the (2, 1, 3)
code, i.e., 2-out-of-3 code. The following
matrices are used as G and U:

1011
G= (53)
0112
U=[X,Z] (54)
The information X is X €9 oy and Z is a
uniform random variable on .9 5y. Then the
coding is made as follows:
W, =Z (55)
W,=(X+Z) mod 2% (56)
W,=(X+2Z) mod 2" (57)
This code has the following ambiguity:
H{XIW)=H(X\W,)=M (58)
H(XIW,)=M-1 (59

H(XIWH@)=0 ey, t,7=1,2,3 (60)
Except‘for Eq. (59), the code satis-—
fies the conditions for (2, 1, 3) code.
H(X|W3) is less by ome than M, but the
secret protection ability is almost the
same as that of the (2, 1, 3) code, when ¥
is large. Such a code, which does not com-
pletely satisfy the condition for the (k, L,
n) code, but practically has the same ability
as that of the (k, L, n) code, is called the
psuedo (k, L, »n) code.

The pseudo (k, L, n) code can be con-
structed by the residue operation modulo 2M
for combinations of (k, L, n) other than
those satisfying Egs. (47) to (51). Depend-
ing on the choice of the matrix ¢, however,
it may happen that Eq. (6) of condition 1
is not completely satisfied for ¢ = 0. In
such a case, XV cannot be determined unig-~
uely by a certain set of k code words. In
order that X¥ can always be recovered by
any k code words, one must be careful about
the choice of G.



In the following, the matrix G for k "100011
equal to or less than 5 is shown for the (k,
L, n) node and the pseudo (k, L, n) code ob~ G = 010012 (n=4%)
tained by the residue operation modulo 2M. T 00101 1 =
For the pseudo (k, L, n) code, G is chosen
so that the information is recovered unig- LO00112
uely by any k code words. {2, 3} in addi-
tion to {0, 1} is permitted as the element 10010001
of the matrix. GkIS is for the strong (X,
L, n) code, and GkrW is for the weak (k, L, G = 01001001 (n=4,5%)
n) code. The length of n applicable to each 743 00100101 '
Gkl is also shown. The n marked by asterisk
produces a pseudo (k, L, n) code. L00011112
When a (k, L, n) code is constructed 100010001
from these matrices, the code word is deter- v 010001001
mined by Gis= (n=4,5)
. 001000101
LI, I, ] 000100011
Xy Xow o Xp Ziy Zoy o Zy-p 19 (61) T100001
010001
where g is the submatrix from the (L + l)th (;§,= 001001 (n=5)
to the (L + n)th column of GkL. The addi-
. : . 000101
tion is the residue modulo 2M., Xi, 27 €99y
and 2 is a uniform random variable on oM: LO0OO0OO11
F100001127
1011 10112
(;251.-.-_-'[0112] (;252:[:01121] 01000121
- ' GF,=]100100113 (n=5%, 6%)
(n=2,3%) (n=2%,3%) 00010122
o fro101
Gz”z”[ ]1] (n=2,3) L00001131]
010
100001107
1001 10011 0101
0100 0
GHhi=10101 Gi,=| 01012 w .
] G¥H=100100100 (n=5%)
0011 00113
00010111
(n=3) (n=s7) loo001122
100111 N
G3;=| 010123 (n=3%) (1000100001°
001132 0100010001
7101001 GH=10010001001| (n=5,6)
Gh={010101] (n=3,4) 0001000101
LOO1111 L00001 11111}
1001001 100001000017
o 0100101‘ (a3 . 4) 01000010001
733 7 ] E n= s "
» Co10011 ¢%={00100001001| (n=5,6)
N ’ 00010000101
10001 0000100001 1]
01001 -
Gfx”—"' (n=4) 5. Conclusions
00101 This paper proposed the (k, L, n)

L 00011 threshold scheme which is an extension of
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the (k, n) threshold scheme suited to the
distributed storage or transmission of the
information. The method of constructing
the (k, L, n) code is also presented to re-
alize the proposed scheme. Using the (k, L,
n) threshold scheme, the bit length of the
subinformation can be decreased to 1/I, while
maintaining practically the same secret pro-
tection ability as that of the (k, n) scheme.
Thus, a very efficient coding is realized.
The encoding and the decoding of the (k, I,
n) code are of the same extent of complexity
as those of the k-out-of-n code realizing

the (k, n) threshold scheme. Consequently,
the (k, L, n) threshold scheme will be ap-
plied directly to any field where the appli-
cation of the (k, n) threshold scheme is now
considered.
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APPENDIX

Proof of Theorem 5
(Upper bound for 7nmax)

For Eq. (18) to hold, nmax must satisfy
the following relation, as is seen from the
proof for Corollary 1 of Theorem 4 [3]. 1In
Theorem 4 in [3] #max + 1 should be replaced
by “max.

if gk, g S qTHE—1 (AL)

it gt <k, ng,<k+1 (A2)
(lower bound for #max)

The lower bound for mpax can be
achieved by determining the matrix ¢ as fol-
lows, where m is set as 1. For m > l, it
suffices to use BRIy instead of the elements
B (=0, 1, a, a2, «++, ag-1)of the matrix G:

L = k:
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(Mar. 1963).
when q" >k
01
00
G=| I, Hoyo (A3)
00
10
where Hgt is the following matrix:
l 1 ............... l
174 az ............... d‘["l‘t
]1”: a? Qb e afe-t-0)2
akb=l=s g2Uk=1-5) ... @am =t =14
(A4)



if g < k

1
G=1\|1, I, !
(A5)
1
L=k~1,
if ">k
G=[ 1, Hy ] (A6)
if "<k
01
01
G= Iy Ty (A7)
01

Here, x is an element of GF(g) other than
Oand 1 + 1 + ¢+« + 1 (L times addition of
1's). If g = 2 and k is even (I is odd),
such an element x does not exist, but always
exists for other cases:

1<CL< k-1,
q"’~>/c

GL 1, He ] (48)

if qT" =k

(a9)

Q
il

if
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Q corernes 0
1y 1
Q orereees 0
. Qereee ol10
i oo (410)
; " Hyo
00
L Qe 0lo 1 ]
It suffices to consider the following
matrix, as is seen from Theorem 3:
I, A
oo e 0 (A1)
B
O vereen 0

In order that Eq. (l9) is satisfied,
any (k - L) columns of submatrix B of Eq.
(All) must be linearly independent. By Theo~-
rem 3 of [3], on the other hand, the maxi-
mum number of linearly independent columns
in Bis k = L + 1 for gn £ k - L. Conse-
quently,

Pmax b= L+1<4Fk (A12)
When ¢ £ L, the number maximum of linearly
independent columns in B is g + k - L - 1 or

less. Consequently,
nxnaxgqm+k_l'_1§.k'_l<k (A13)
This contradicts
Nmax = (A14)

Consequently, there does not exist a matrix
G satisfying Eq. (19).

L = 1: 1In this case, the code coin-
cides with the strong (k, L, n) code, and
if g7k, Pt g E—2 (A15)

max =
if ¢" <k, Ng.x=k (A16)



