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Proposal of a Lattice-Based Visual Secret Sharing
Scheme for Color and Gray-Scale Images

Hiroki KOGA' and Hirosuke YAMAMOTO', Members

SUMMARY  The visual secret sharing scheme (VSSS) pro-
posed by Naor and Shamir{1] provides a way to encrypt a secret
black-white image into shares and decrypt the shares without
using any cryptographic computation. This paper proposes an
extension of VSSS to sharing of color or gray-scale images. In
this paper (k,n) VSSS for images with J different colors is de-
fined as a collection of J disjoint subsets in n-th product of a
finite lattice. The subsets can be sequentially constructed as a
solution of a certain simultaneous linear equation. In particular,
the subsets are simply expressed in (n,n),(n — 1,n) and (2,n)
cases. Any collections of k — 1 shares reveal no information on a
secret image while stacking of k arbitrary shares reproduces the
secret image.

key words: secret sharing, visual secret sharing, visual cryptog-

raphy
1. Introduction

The visual secret sharing scheme (VSSS) proposed by
Naor and Shamir[1] unveils a new realization of the
(k,n) threshold method [2] for black-white images. In
the (k,n) VSSS a black-white image is encrypted into
n black-white images called shares. If each share is
printed on a material such as a transparency, the orig-
inal black-white image is reproduced only by stacking
up arbitrary k shares. This means that no cryptographic
computation is required in the decryption of the shares.

In (k,n) VSSS a pair of two sets Cy and C; com-
posed by n-tuples of m subpixels plays an important
role. White and black pixels of a black-white image are
encrypted as elements randomly chosen from Cy and
C1, respectively. All n shares become m times larger
than the original black-white image. Two sets Cy and
C; enable parallel decryption of the shares by using a
property of human visual system. They cause difference
of brightness between black and white pixels when arbi-
trary k shares are stacked up. They also guarantee that
no information on the original image is revealed from
any collection of k —1 shares. For given k and n Katoh
and Imai[3] and Droste[4] attempt to find Cy and Cy
with small m.

It is quite natural to consider an extension of (k,n)
VSSS applicable to color or gray-scale images. In the
case of gray-scale images, Naor and Shamir[1] refers
to two ideas that realize VSSS. However, it is suspi-
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cious that reproduced images are actually recognized
as gray-scale images. On the other hand, the visual
secret sharing of color images is treated by Naor and
Shamir [5]. Though[5] proposes a new scheme based
on “cover semi-group,” the scheme only enables an effi-
cient (2,2) VSSS for color images including two colors.

In this paper a new method to realize (k,n) VSSS
for color images is proposed. At least in principle, the
method enables to encrypt color images with arbitrary
numbers of colors into shares and decrypt arbitrary &
shares simply by stacking up them. The method in-
cludes a technique to realize (k,n) VSSS for gray-scale
images with arbitrary numbers of levels. Given a set
of colors, this method guarantees that any collection of
k —1 shares reveals no information on the color of each
pixel as well as the original images themselves.

Mathematically, proposed (k,n) VSSS for color
images with J colors is defined as a collection of J sub-
sets in n-th Cartesian product of a finite lattice. Such
VSSS is called the lattice-based VSSS. In the lattice-
based VSSS, not only pixels are treated as elements of
the finite lattice but also stacking up two pixels is de-
scribed as an operation defined on the finite lattice. A
certain class of (k,n) VSSS for black-white images can
be explained as the lattice-based (k,n) VSSS.

This paper is organized as follows. Section 2 is de-
voted to the definition of the lattice-based (k,n) VSSS.
The definition can be regarded as a modification of the
definition given by Naor and Shamir. A simple con-
struction of the lattice-based (n,n) VSSS for n > 2 is
proposed in Sect. 3. It is shown that in (2,2) case color
images with 27 colors are encrypted into two shares with
2P~1 subpixels if there exists an isomorphism between
the set of colors and the Boolean algebra with 27 ele-
ments, where p is an arbitrary positive integer. Section 4
develops a construction of the lattice-based (k,n) VSSS.
The construction is valid for arbitrarily given n > 2 and
2 <k <n—1. Remarks on the lattice-based VSSS are
given in Sect. 5.

2. Definition of the Lattice-Based (k,n) VSSS

‘Let L be an arbitrary finite lattice. From the definition

of the finite lattice, for arbitrary elements a,b € L both
the least upper bound and the greatest lower bound of
{a,b} belong to L. The least upper bound and the
greatest lower bound of {a, b} are denoted by a Ub and
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anb, respectively. It is well-known that the idempotent
law, the commutative law, the associative law and the
absorption law hold with respect to U and N.

Figure 1 shows the Hasse diagram of the binary
lattice. The lattice is denoted by Ly;,. It has only
two elements. The least upper bound and the great-
est lower bound of two elements are defined as follows:
0U0=0,1U0=0Ul=1Ul=1,0N0=1N0=0N1=0
and 1N 1= 1. Note that U means the “or” of the two
elements.

Another finite lattice L., is given in Fig.2. It is
well-known that the eight colors, white (0), cyan (C),
magenta (M), yellow (Y), red (R), green (G), blue (B)
and black (1), have the finite lattice structure given in
Fig.2. Here, we use a convention to denote the great-
est element and the least element by 1 and O, respec-
tively. Mixture of arbitrary two colors means finding
the least upper bound of the two colors. For exam-
ple, the mixtures of two colors are computed as follows:
0U0=0,0UC=C,CuC=C,CUY=G,GUl=1 and
1U1=1. With respect to the mixtures, it is convenient
to interpret 1 as black that turns all colors into black
and 0 as white that does not affect the other colors.
The mixtures of more than two colors are easily defined
since the operator U satisfies the commutative law and
the associative law.

It is important to note that the m-th Cartesian prod-
uct of an arbitrary finite lattice L is also a finite lattice.
For any (ay,as,...,a,) and (b1,b2,...,by,) € L™, two
operators Upm and Np= are induced in L™ as follows:

(a1,82, .- am) Urm (b1, ba, ..., by)
= (a1 Uy, by, ag U, ba, . .., 0 Ur bpy),
(a,l,a,g, . ..,am) mLm (bl,bg,. . 7bm)

= (a1 Ny, bl,CLQ N, bQ,...,CLm My, bm),

where Uy and Ny, denote the operators defined in L.

0
Fig. 1 Hasse diagram of Ly,.

0
Fig. 2 Hasse diagram of L.

1263

When there is little confusion, both Uz, and Uzp= are
denoted by U.

Now, we are ready to define the lattice-based (k, n)
VSSS.

Definition 1: Let m > 0 be given. Denote by L a
finite lattice of a finite number of colors that can be
physically realized. Suppose that C = {c1,¢a,...,cs}
is a subset of elements in L, which is not necessarily
a sublattice of L. For all g satisfying 1 £ ¢ £ k and
distinct {i1,%3,...,%4} C{1,2,...,n} define a mapping
h(il,iz,...,iq) . (Lm)n N by

h(ihiZa-“’iq)(w) = wil Uwi2 U---u wiqv (1)

where z = (z1,22,...,%,) € (L™)" and for any a,b €
L™ aUb means the least upper bound of {a, b}. If there
exists {(Xy;, Ve, )}/oy € (L™)™ x L™ with the follow-
ing three properties, {(Xc;, Ve;) 3.7=1 is called the lattice-
based (k,n) VSSS with colors C.

1. For all 5 = 1,2,...,J and distinct {i1,42,...,0%}
C{L,2,...,n}, all z € A, satisfy

h(il,ig,...,ik)(m) E ycj .

2. For all ¢ < k and {i1,42,...,%4} C {1,2,...,n}
deﬁneﬂXc(;l’zz"”’”) by

X(il,iQ,...,iq) —
Cj

{(ziy, iy, .-, 20,) ¢ (1,22, .., Tn) € Xy b (2)
Then, Xc(jl’iz""’i‘Z),j = 1,2,...,J are indistin-
guishable in the sense that they contain the same

elements with the same frequencies.

3. For all ¢; € C satisfying ¢; = 1 € L, all the ele-
ments in )., are composed by 1s and at least one
c;. In case that ¢c; = 1, V., has only one element
composed by m 1s. d

For example, in case that m = 2 and L = Ly;,, the
lattice-based (2,2) VSSS with colors C = {0,1} is con-
structed as follows: -

w81
S

where we use the notation that an element in (L™)" is
expressed in the form of n x m matrix when L is the
m-th Cartesian product of another finite lattice such as
Lyin or Leo. Then, hli:72:5%a) (1) defined in (1) means
to compute the least upper bound of the ¢;-th, ip-th, ...,
and i,-th rows of the matrix describing . In the exam-
ple above, elements in ), can be recognized as white
since they contain one 0.

; }} Yo =1{01,10}, ()
0
1

}} n={1}, @
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The lattice-based VSSS includes a certain class of
VSSS for black-white images if it is defined over a Carte-
sian product of Ly;,. In (2,2) VSSS for black-white
images white pixels and black pixels are encrypted as
elements of Cy and Cy, respectively, where Cy and C;
are sets of 2 x 2 matrices that are obtained by permuting
all the columns of the following Sy and Sy:

10 01
s-lio) s-[10)
[1]. 1t is clear that Cy = Ay and C; = A, where A
and X are the sets defined in (3) and (4), respectively.
On the other hand, (2,3) VSSS for black-white images

cannot be treated in the framework of the lattice-based
VSSS. In (2, 3) case Sp and Sy are written as

100 100
So=|100]|, Ss=|010],
100 001

respectively [ 1], which may lead to }p = {100,010, 001}
and Y; = {110,101,011}. This ), violates the defini-
tions of the lattice-based VSSS. To be treated as the
lattice-based (2,3) VSSS )4 should be equal to {111}.

Notice that there is a practical but an essential rea-
son why the finite lattice is introduced in the framework
of VSSS. Let S be a set with an internal operation. Sup-
pose that all subpixels take values in S and the internal
operation describes stacking up two subpixels. It is nat-
ural to require the operation to satisfy the commutative
law and the associative law. These two laws enable
(k,n) VSSS to decrypt k shares by stacking up them in
an arbitrary order. In addition, almost all elements in
S cannot have their inverses with respect to the internal
operation. Permitting the existence of inverses for all
s € S leads to pathologic VSSS. For example, stacking
a black subpixel with another subpixel can yield a white
or transparent subpixel. Finite lattice is one of the sim-
plest algebraic structures that meets these requirements.

3. Simple Construction of (n,n) VSSS

In order to construct the lattice-based VSSS with colors

C = {e1,ca,-..,¢5}, it is necessary to choose a finite
lattice L, m > 0 and {(X,,, Ve, )}/—; € (L™)™ x L™ ad-

equately. Simple realizations of the lattice-based (n,n)
VSSS are given in this section.

3.1 Simple (2,2) VSSS

Denote by Lycg the sublattice of L., composed by
0,Y,C,G and 1. In case that L, = Lycg and m = 4,
the lattice-based (2,2) VSSS with colors C = {Y,C, G}
can be constructed. Elements of Ay, Xc and Xg are ex-
pressed in the following form, respectively:

Yo1c cCo1vy
XY'[OYCl}’Xc'[OCYl]’
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Y CO01
¥ : [ CY10 }
All the elements of Ay, X and X; are obtained by
permuting the columns of the corresponding elements.
Hereafter, writing ).,c € C is omitted since they are
easily obtained. Note that each element of )y, Yc and
V¢ has two 1s. This means that two out of four subpix-
els are recognized as a color belonging to C, while the
others become black.

In case that L = L., and m = 8, the lattice-based
(2,2) VSSS with colors ¢ = {0,Y,M,C,R,G, B,1} can
be constructed by using 0,Y,M,C and 1. Eight ele-
ments belonging to Ay, Xy, v, Xc, AR, Xg, Ag and Ay
are written as follows, respectively:

. [0YMC1111
®*lo111YMCu1)
X_'YOMC1111'
'loy1a1MC11)
X_'MOCY1111'
MlomMi1ii1cy11]|
X_'COYM1111'
c“loCc11YMI11]
X_'YMC01111'
R*lMyYy11Cco11})
X_'CYM01111'
C“lyciimMo11}
X_‘MCY01111'
PlcM11YO011]’
X_'YMC01111
'"[1111YMCoO]

Figure 3 shows the original image, the two shares and
the reproduced image. Since there are 8 = 4 x 2 sub-
pixels, either the height or the width of the original
image should be enlarged twice before the encryption.
Each pixel in the original image is encrypted according
to its color ¢ € C, i.e., it is encrypted into an element
randomly chosen from &,. Though under such encryp-
tion the two shares and the reproduced image becomes
16 = 4 x 4 times larger than the original image, the
four images in Fig.3 are drawn in the same size. As is
understood from Fig. 3, each share does not reveal any
information on the original image. Figure 3 shows that
the original image, which gives an intuitive view of L,
can be recognized from the reproduced image in the
presence of black subpixels. The reproduced image in
Fig. 3 is obtained by computer simulation. However, we
have checked that the original image is actually repro-
duced fairly well by stacking up the two shares printed
on two transparencies.

In case that I = L, and m = 5, the lattice-based
(2,2) VSSS with colors C = {0,Y,M,C,R,G, B,1} are
realized in a different way. Eight elements belonging to
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(a) The original image

(b) The two shares

(¢) The reproduced image
Fig. 3 Encryption and decryption of the lattice-based VSSS
with eight colors.

X, v, A, Ac, AR, X, Ag and A are written as

XM[OYMCl},XY:[YMClO],

0B GR1 0 GRB1
LT PO
% ReG ol % Gresol
% lperiol % olnen)

respectively. Notice that any permutation of not only
the columns but also the rows of the eight elements be-
long to the corresponding eight sets. This construc-
tion is easily extended into the case that there exists an
isomorphism between L and a Boolean algebra. Such
situation will happen when, for instance, intermediate
colors of Y, M and C are treated. If L and a Boolean
algebra are isomorphic, it is well-known that there ex-
ists an integer p > 1 satisfying L = L, . In fact, the
construction above is based on the fact that L., = Lgm.
Therefore, the lattice-based (2,2) VSSS with 2P colors
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can be constructed in the same manner. Such construc-
tion requires 2P~ + 1 subpixels.

3.2 Simple (n,n) VSSS

The lattice-based (n,n) VSSS can be constructed by
using (n,n) VSSS for black-white images. Naor and
Shamir [1] proposes the following construction of Cy
and C;. Let W = {ej,eq,...,e,} be a finite set. Let
M, T, ..., Tyn—1 aNd 01,09, ..., 09n—1 be lists of all sub-
sets of W whose cardinalities are even and odd, respec-
tively. Define two n x 27~! matrices Sy and S; whose
ij-components are determined by

— 1, if e; € e

Soli, j] = { 0, otherwise,
and

e 1, lf €; S 0-79

Sili, j] = { 0, otherwise,

foralli <i<nand 1 <j <271 All matrices ob-
tained by permuting the columns of Sy and S; yield Cj
and C, respectively. In case that n = 3, Sy and Sy can
be written as follows:

0011 1100
So=|01011], S;={1010 (5)
0110 1001

How do we use Sy and S; in the construction of
the lattice-based (n,n) VSSS? A property of the two
matrices is a key to the construction. We describe the
construction via an example in the case of n = 3. Define
So(x) and S;(x) by

x x 11 1 x x
So(x)=|x 1 x1]|,8Kx=]x1x
x 1 1 x x x 1

In fact, Sp(x) and S (x) are obtained by replacing Os in
Sp and S; with xs and deleting the first column in S;.
Suppose that x is either Y or C and consider each row of
So(x) and Sy(x) as elements in L. and L., respec-
tively. It is important to note that the least upper bound
of the three rows of Sy(x) contains one x while the least
upper bound of the three rows of S1(x) no longer con-
tains x. Therefore, concatenations of Sy(Y) with S;(C)
and Sp(C) with S1(Y) lead to the following elements of
the lattice-based (3,3) VSSS with colors C = {Y,C}:

YY111cCC
X:|lY1lY1lC1cC]|,
Y11YCCl1
[CC111YY]
Xe:|C1C1Y 1Y
| C11CYY1

Increasing the number of colors is easy. For ex-
ample, the lattice-based (3,3) VSSS with colors C =
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{Y,C, G} is obtained by introducing So(G) and S;(G).
One of elements in Xy, Xc and A can be written as

vt So(Y) @ S1(C) ® 51(G),
Xc 1 So(C) ® S1(G) ® S1(Y),
Xg : So(G) ®5 (Y) ® Sl(C),

respectively, where ® denotes the concatenation of the
matrices. When C is a collection of J colors, the number
of subpixels m required by the scheme becomes
{ J-2nml 1, if n is even,
m =

J-2nl—(J-1), ifnisodd.

4. Construction of (k,n) VSSS

In this section a useful method to construct the lattice-
based (k,n) VSSS for arbitrarily given n and k is pro-
posed. Two matrices with n rows, which are denoted by
A(x) and D(x), play the same roles as Sp(x) and Si(x),
respectively, where So(x) and S;(x) are matrices intro-
duced in Sect. 3.2. In case that x = Y or C, while xs and
1s consist of the least upper bound of any k& rows of
A(x), only 1s consist of the least upper bound of any k
rows of D(x). In such construction of the lattice-based
(k,n) VSSS with colors C = {Y,C}, one of elements
of Xy and Xc can be expressed as A(Y) ® D(C) and
A(C)® D(Y), respectively. The two matrix are designed
so that any collection of k£ — 1 rows of A(Y) ® D(C) or
A(C) ® D(Y) reveals no information on Y and C.

The construction using A(x) and D(x) includes
two advantages. First, the number of colors is eas-
ily increased. The lattice-based (k,n) VSSS with col-
ors C = {Y,C,G} is realized by A(Y) ® D(C) © D(G),
A(C)@D(G)@D(Y) and A(G)®D(Y)®D(C). Secondly,
the construction can be applied to gray-scale images. It
does not use x Ux = x for x € L neither 0 nor 1 in
decryption of the shares. All the operations required
for the decryption are UQ = 0, 0Ux = xUO0 = x,
1Ux=xU1l=1and 1U1l=1. This indicates that L
should not necessarily be a finite lattice but a set with
the least and the greatest elements.

Throughout this section, we define L as L = Lycg
and construct the lattice-based (k,n) VSSS with colors

= {Y,C}. Though the construction is mainly ex-
plained via examples, it is easily extended to general
cases.

4.1 (n,n) VSSS

Suppose thatx =Y or C. Foreach j =1,2,...,n define
M,, n—;(x) as the matrix that is obtained by all the per-
mutations of the column containing one x, n — j 0s and
j — 1 1s. In case that n = 4, My 3(x), My 2(x), My1(x)
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and M, o(x) can be expressed as follows:

x 000
0x00

M4,3(X): 00 x 0 H (6)
| 000 x
([x 00 x0110x100]
0x00xx011010

Miz()=1490x110xx0001 |7
_111000000xxx_
[x 01 10xx11011]
0O0xx0111x1101

M4,1(X)_110xx011x110’(8)
111111000 x x x|
[x 111
1 x11

Maolbd =117 x 1 ©
111 x

Notice that My 3(x) is the only one matrix that the least
upper bound of the its four rows contains xs.

Consider A(x) and D(x) expressed in the following
forms:

A = M () © M (),
D(x) = M%) © My (),
where for matrix § and « > 0 5 is defined as
o times
sl 5050 08

and aq, as, a3 and oy are positive integers specified af-
terwards. Define Mi}f’g)(x) and Mg’z’?’» (x) as fol-
lows:

x 00x0110x100
M )=0x00xx011010 |,
00x110xx0001
x 00x 0110 x
MG (x) = 0X00xx011:|
00x110xx0

Here, M, 2}2’2’3) (x) are obtained by removing the fourth
row of M,o(x). Removing all the columns of

MSZQ ¥ (x) containing no x yields M<<123» (x). For

Jj = 1,3,4 define M4<<1 2J3» (x) in the same manner. It
is easy to verify the followmg four equalities:

M2 (x) = Ma2(x), (10)
M (x) = Mz a(x) © M31<x> an
Mﬁ’g’g»(x) M3 1(x) © M3 0(x (12)
M (x) = Msa(x), (13)

where for two matrices P and Q P = ) means that
= @ actually holds by permuting the columns of
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@ adequately. Define A(23)(x), ALL2:3) (x) D(1:2:3) (x)
and D¥523) (x) in the same way.

Now, set &y = 1 and determine as, a3 and oy
by solving A€H2:3) (x) = DEL.2:3) (x), which can be ex-
pressed as

MG (x) © MHee ()
= M ) 0 MG 6 (14)
or
M3 2(x) © M (x) © MEE! (%)
= M (x) 0 MEP () 0 MES (0, (19)

where (10)—(13) are used for obtaining (15). Since
there is no column that is contained in any two of
M3 o(x), M3,1(x) and Ms(x), (15) implies that cp =
a3 = ag = 1. Therefore, A(x) and D(x) can be ex-
pressed as

A(X) = M4’3(X) ® M4’1(X>,
D(X) = M4,2(X) ® M4’0(X).

These matrices lead to the lattice-based (4,4) VSSS with
colors C = {Y,C}. All the permutations of columns of
A(Y)® D(C) and A(C) ® D(Y) consist of Xy and X,
respectively.

Surprisingly, a4, ag, a3 and a4 chosen in this way
yield

Xy(il,iz,is) _ Xéilinai3) (16)
for any {¢1,42,%3} < {1,2,3,4}, where Xy(il’iz’ia)
and XC(“’”’“’) are the sets defined in (2). In or-
der to verify (16), we first notice that og,as,as
and aq satisfying A%23)(x) = D23 (x) guaran-
tee X\gl’z’g) = XC(1,2,3). Since some of columns of
ALL23) () and D123 (x) are removed from A%:23)(x)
and D(123)(x), respectively, A4%230(x) = DEL.2:3) (x)
does not mean A(L23(x) = D23 (x),  How-
ever, A«I’Q’“o’»(x? = D23 (x) means AL23(Y) ©
D1:23)(C) = A1:23)(C) © DL23)(Y), which gives rise
to X\$1,2,3) = Xé1’2’3). From the symmetry on the rows
of My ;(x),j = 0,1,2,3, it is obvious that X\51,2,3) =
Xc(l’2’3) implies A{ %) — Xéil’h’”) for any distinct
{i1,ia,93} C {1,2,3,4}. In the case that {i1,12,i3} is
not distinct, (16) is obvious from the distinct case.

Extension of this construction to (n,n) case is easy.
Two matrices A(x) and D(x) can be written as

A(X) = Mn n—l(x) ® Mn,n—3(x) IORERNO’ Mn,O(X)7

D(x) = Myn—2(x ) © My n—a(x) @+ © Mp,1(x),
in case that n is odd, and

A(X) = Mn,n—l(x) O] Mn,n—S(X) (OXERNO’ Mn,l(x)7

D(X) = Mn,n—Z(x) O] Mn,n——él(x) ©---0 Mn,O(x)7
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in case that n is even. It is easy to check that A(x)®.D(x)
has the following two properties: (i) the number of
columns is » x 2771, and (ii) the least upper bound
of n rows contains n xs. Note that in the calculation
of the least upper bound x U x = x is not used, where
x = Y or C. This property leads to a practical advantage
if it is compared with the construction given in Sect. 3.2.
Practically, CUC and YUY may seem different from C
and Y, respectively, i.e., they seem darker than Y and
C themselves. This construction keeps the reproduced
images from getting dark.

42 (n—1,n) VSSS

Suppose that n = 4. Let My 2(x), My 1(x) and My o(x)
be matrices defined in (7)—(9). For each j7 = 0,1,2 de-
fine Mi}j’m (x) be the matrix obtained by removing the
third and the fourth rows from My ;(x). Let Mf’;’z» (x)
be the matrix obtained by removing all the columns of

M 4(271]-’2) (x) including no x. It is easy to verify the follow-
ing three equalities:

MEP (%) = ME(x) © Mao(x),

ME (%) = Mo (x) © My (),

Define A(x) and D(x) as
A = M5 60 © MIF (),
D() = My (),
where ay,a9 and ag are positive integers specified
afterwards. Define A1) (x), AL20 (x), DO (x) and

DEL2)(x) in the same way.
Now, set oy = 1 and choose s and «g satisfying

M () © Ml 60 = MR (%) © MY (), (17)

which is equivalent to AL2) (x) = DEL2D (x). Clearly,
(a2, a3) = (2,3) is the solution of (17). Therefore, A(x)
and D(x) are expressed as A(x) = My 2(x)® Mi (]]( ) and
D(x) =M, f]l (x), respectively.

In (n — 1,n) case A(x) and D(x) are written as

AX) = My o) 0 MP_, 0@ 0 MITH (),

D) = ME _c0oMH e oMK,
in case that n is odd, and

AX) = My 0 MEL_, (000 MITx),

D(x) = MZ_soMY _jxo-oMI'THx),

in case that n is even. The number of columns of
A(x)® D(x) becomes n(n—1)2"~2 while the least upper
bound of arbitrary n — 1 rows contains (n — 1) xs.
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43 (2,n) VSSS

In (2,n) case A(x) and D(x) are also simply expressed.
They can be written as

AX) = My, (),
D(x) = My (x),

which are easily obtained in the same manner devel-
oped in Sect.4.1 and Sect.4.2. The number of columns
of A(x) ® D(x) is 2n(n— 1) while the least upper bound
of its arbitrary two rows contains two xs.

44 (k,n) VSSS

The lattice-based (k,n) VSSS for 3 < k< n — 2 can be
constructed by using the same method developed in the
preceding subsections. For simplicity, suppose that k is
even. Define A(x) and D(x) as follows:

o M (),
@ M (x),

n

D(x) =M 000 M () e

Ax) =M (oM e

where {o;}¥_, is a sequence of positive integers. Let
Xy and A be collections of matrices obtained from
all the permutations of the columns of A(Y) ® D(C)
and A(C) ® D(Y), respectively. Define A F=1) (x)
and D*=1)(x) as before. All should be done
is to determine {a;}%_, satisfying ALk =1 () =

DXL--k=1)(x), However, it is quite natural to ask if
such sequence of positive integers actually exists.
Hereafter, the existence of a sequence of integers
{ozj}le is proven. Unfortunately, positiveness of the
sequence, ie., a; > 0 for all j = 1,2,...,k, cannot
be proven. The positiveness, however, is not essentially
important. Suppose that A(x) includes ML‘X,@LJ (x) satis-

fying @; < 0. In case that a;; < 0, Miaé] ;(x) should be
removed from A(x) and concatenated to D(x). In case
that a; = 0, M, ;—;(x) need not be concatenated to
A(x). The same operation can also be applied to D(x)
if it includes M[ 7] ;(x) satisfying a; < 0.

" Proof on the ex1stence of a sequence of integers
{a,;}E_, is not so difficult. For simplicity, set a; = 1.
From the definition of M, r_;(x), Ms’lk’:]?k_l» (x) can
be expressed as follows:

1,k—1 . i »
ME 0 = ML L0000 M (00
o M (), (18)

B =1,2,
isfying

Lk, i=1,2,...,k— 1, are integers sat-

n—k+1 n . .
/Bj,i= ( . )7 1f_]_1§2§77/—k+], (19)

1—3+1
0, otherwise.
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Since iji = 0 for all « < j— 1 and ﬁj,j—l = ].,

oj, J=2,...,k is calculated according to
m—1 m—1
Qom = Y 0my1Pit12m 1 — D 02iBaizm 1, (20)
i=1 i=1
m m—1
Qgmy1 = Z 002i 82 2m — Z 00241 52i4+1,2m 2n
1=1 =1
for m = 1,2,... until a4 is obtained. Notice that for
all j = 2,...,k «ay is sequentially calculated by using

oq,...,05_1. Since no division is included in (20) and
1), {aj}é?zl turns out to be a sequence of integers.

5. Discussions

This section is devoted to comparison between the two
kinds of the lattice-based VSSS given in Sect. 3.2 and
Sect. 4, respectively. The lattice-based VSSS given in
Sect. 4 is intended to keep the reproduced images from
getting dark. It does not use the property that xU x = x
while the one given in Sect. 3.2 uses the property, where
x 1s an arbitrary element in a finite lattice I, different
from 0 and 1. Though construction of the lattice-based
(k,n) VSSS for general k and n is discussed only in
Sect. 4, the same can be established in Sect.3.2. For
example, Sp(x) and S;(x) can be expressed as

So(x) = Npu(x) © Npjn—2(x) © -+ - © Np1(x),
$1(x) = Nppe1(X) @ Ny e3(X) @ -+ @ Npy o(x)
in (n,n) case of odd n and
So(x) = Na,2(x),
S1() = "”w
in (2,n) case, where N,, ,,_;(x),j =0,1,...,n, are ma-

trices obtained by all the permutations of the column
with n — j xs and j 1s. For obtaining Sp(x) and S;(x)
in (k,n) case, we define Sy(x) and S1(x) as

SO(X) = N[all( )GN[(XB] ( ) @N"[Zf?élk](x),
Si(x) = N};Z] x)® N[%] NESIOREE @NL‘TSﬂ](X)

}k—}—l

and find a sequence of integers {c; that meets

S(<)<1’ nh=1) (x) = 5’1« ok 1>>( ), where k is assumed to
be an odd integer and Sé(l""’k_l» (x) and Sl«l’""k~1>> (x)
are defined in the same way as AXL+F=1) (x) in Sect. 4.4,
Then, the lattice-based (k,n) VSSS with colors C =
{Y, C} is realized by Sp(Y) ©® S1(C) and Sp(C) ® S1(Y).

Generally, the construction of the lattice-based
(k,n) VSSS using A(x) and D(x) will make the repro-
duced images clear compared with the one using Sy(x)
and S;(x), though it requires more subpixels. Quality
of a reproduced image is essentially determined by the
ratio r of the number of nonblack pixels to the total
number of pixels in the reproduced image. In case of
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the lattice-based (n,n) VSSS with colors C = {Y,C}
constructed by A(x) and D(x), r becomes 1/2"!. On
the other hand, r = 1/(2™ — 1) if Sp(x) and S;(x) are
used. Even in (k,n) case, A(x) and D(x) make the ratio
greater. Practically, » should be less than % in order
to grasp a concealed image from the reproduced image.
If the concealed image is simple, r < 1(1)—0 is acceptable.
However, the reproduced image seems as if it contained
only black pixels in case that r > L.

It is interesting to notice that finding two ma-
trices So(x) and Sy(x) that satisfy So(x){Lk=1) =
S1(x){-E=1) and setting x = 0 lead to (k,n) VSSS
for black-white images. In (2,7n) case such Sy(x) and
S1(x) can be expressed as

So(x) = Np2(x) @ NJGD=2/2 00
S1(x) = NI ().

n,l

Note that both Sp(x) and Sy (x) are n xn(n—1) matrices.
Two sets Cy and C; are collections of all the permuta-
tions of the columns of Sy(0) and S;(0), respectively.
However, (k,n) VSSS constructed in this way is not ef-
ficient. In fact, the following n x n matrices So(x) and
S1(x) are available in (2,n) case:

So(x) = N (x) © NI H(),
Si(x) = Nn,l(x)-

This dissatisfaction arises from the requirement that in
the lattice-based (k,n) VSSS the least upper bounds of
any k rows of S;(x) should be composed by all 1s.
For constructing efficient (k,n) VSSS for black-white
images, algorithms proposed in [3] and [4] should be
used.

6. Conclusion

This paper attempts to extend a class of images that
the visual secret sharing scheme proposed by Naor and
Shamir can be applied to. First, the visual secret sharing
scheme is defined as a collection of subsets in a Carte-
sian product of a finite lattice. Stacking up two pixels
is described as computing the least upper bound of the
two pixels. Givenn = 2 and k satisfying2 <k <n—1,
it is shown that the (k,n) visual secret sharing scheme
for color and gray-scale images are realized by concate-
nating matrices with certain properties.
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