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SUMMARY In this paper the performance of the Block Sort-
ing algorithm proposed by Burrows and Wheeler is evaluated
theoretically. It is proved that the Block Sorting algorithm is
asymptotically optimal for stationary ergodic finite order Markov
sources. Our proof is based on the facts that symbols with the
same Markov state (or context) in an original data sequence are
grouped together in the output sequence obtained by Burrows-
Wheeler transform, and the codeword length of each group can
be bounded by a function described with the frequencies of sym-
bols included in the group.
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1. Introduction

The Block Sorting (BS) method was proposed by Bur-
rows and Wheeler [2] as a new lossless data compression
algorithm. In the BS method, a given data block =V is
first converted to another sequence y” with the same
length by sorting N sequences generated by cyclic shifts
of zV, and y" is finally encoded to a binary sequence by
the Move-To-Front (MTF) coding scheme[10]**. The
practical performance of the BS method is examined by
compressing many kinds of files, and it is shown that the
BS method attains a high performance compared with
other data compression methods[3]—[6]. However, the
performance has not been analyzed theoretically well,
and even the asymptotic optimality has not been proved
yet. The difficulty in theoretical analysis comes from the
fact that the probability distribution of ¥V cannot eas-
ily be obtained because the sorting operation destroys
the probabilistic structure of z™.

In this paper, we evaluate the average codeword
length of the BS method for stationary ergodic finite or-

der Markov sources by extending the proof of the MTF-

coding scheme devised in [10]. In Sect.2, we review
the encoding algorithm of the BS method. The aver-
age codeword length of the BS method is theoretically
evaluated in Sect. 3. We show that the codeword length
can be bounded above by a function described with the
numbers of symbols and Markov states (or contexts) in-
cluded in V. This bound means that the average code-
word length converges to the entropy of the Markov
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source asymptotically.
2. Encoding Algorithm of Block Serting Method

In this section, we review the BS method proposed by
Burrows and Wheeler[2]. Let 3V = zyzn_1--- 2221
be a block to encode***, where x; takes values in a fi-
nite discrete ordered set A = {a1,az2,---,aa}. A= |A
is the cardinality of A.

We first obtain N sequences by shifting ¥ cycli-
cally. Letting M(z") be a N x N matrix with the ob-
tained N sequences as rows, it is given by

TN IN-1 0 T2 T1

N IN-1 TN-2 - Ti1 IN
M@"Y) = : ; o @

T ay o @3 T2

Next, we sort the rows of the matrix M (5EN ) in
lexicographical order. Assume that ZV is located at

R(#N)-th row in the sorted matrix M(zN). Then we

use the last column of M(ZV), say y”, and the number
R(zV) in the encoding.

The last column vy = yiye---yn is encoded
to a sequence of positive integers z© = ning: NN
by the MTF coding scheme with an initial list L =
(a1,as, - +,a4). Bach y; is mapped to integer n; if y; is
equal to the n;-th element of L, and the n;-th element
is moved to the front of list L. Each obtained integer
n; is finally converted to a binary sequence by a uni-
versal code of the positive integers[12]—[14] or entropy
coding like Huffman code, Arithmetic code, etc. On
the other hand, R(zZ") can be represented by a binary
number with [log N bits.

The encoding z to y” is called B-W (Burrows-
Wheeler) transform. Refer [2] for more details of the BS
algorithm and how to decode ZV from 5 and R(z").

Example
In the case of 2V =arbadacarba (which is the reverse
of zN =abracadabra),

**1t is known that the MTF coding scheme is equivalent
to the recency rank coding proposed in [11].
“**In order to simplify the theoretical analysis, we use
the reversed block ZV = zyzn_1---2az1 instead of z" =
1T - TN—12ZN 1N this paper.
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1. the B-W transform:

r arbadacarba -
rbadacarbaa
badacarbaar
adacarbaarb
dacarbaarba
acarbaarbad
carbaarbada
arbaarbadac
rbaarbadaca
baarbadacar

. aarbadacarb

r aarbadacarb
acarbaarbad
adacarbaarb
arbaarbadac
— arbadacarba
baarbadacar
badacarbaar
carbaarbada
dacarbaarba
rbaarbadaca
L rbadacarbaa |

Yy = bdbcarraaaa
REY) =5

2. the MTF coding with initial list L = (a, b, c,d, 1):
2V = 24244512111.

We assume in the following that positive integer n
is encoded to a binary codeword by a universal code of
positive integers, in which the bit length of codeword
can be upper bounded by a function f(n) satisfying the
following properties.

Property 1:

1. 0 < f(s) < oo for any real number s > 0.
2. f(s) is concave.
3. f(s) is monotonically increasing.

We note that we can easily find such functions for
many useful universal codes of positive integers. For
instance, Elias 6-code[12] has f(s) = log s + 2log(1 +
logs) + 1.

3. Asymptotic Performance of Block Sorting
Method

We evaluate the asymptotic performance of the BS
method theoretically in this section.

Let {X;}2, be a stationary, ergodic k-th order
Markov process which takes values in a finite discrete
ordered alphabet .A. The context set in the k-th order
Markov process can be denoted as C = {c: ¢ € AF}.
Then we have for any ¢ > k that

~ ~i—1
PI'(Xi = xi‘Xi—lXi—Q . 'XQXl =7 )
o~ ~i—1
= Pr(X; =% X1 Xs o X g = z:g),
T; € .A, ./TE\Z:IIC =X; 1Ti_o- Ti—p € C.

)
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Before analyzing the performance of the BS method
theoretically, we consider the properties of matrix

M(@@N).

We first note that each symbol of A has the same
frequency in every row and every column of M (@N) as
#V because each row of M (zZN) consists of the cyclic
shift of ZV. Furthermore, for any 7, and its context

c = 552:,1 in 2V, there exists a row that has ¢ as the

prefix and Z; as the last element. Since M (z") is sorted
in the lexicographical order, rows having the same con-

text ¢ are grouped together in M (zV). Hence, the rows

of ]/\\J/@N) can be classified by contexts C = {c;} as
shown in Fig. 1. Furthermore, since we use the reversed
sequence %, the probability P(y;|¢;) can easily be ob-
tained from the stationary probability of the Markov
source as P(yj]cl) = PI'(Xi = yjIXi—IXi—2 e 'Xi—k: =
Cl). _

Since each row in M(ZY) is one of
the cyclically shifted sequences of ZV, sequence
ZTITi—1 " TIENEN-1 " TN—kti+1, 0 S 1 < k— 1, be-
comes a context (prefix) of some row. This context is
not an actual context of x;11, and this edge effect may
worsen the performance. However, when the block size
N is sufficiently large, such degradation of the perfor-
mance can become negligible because the number of
such rows is only k in the case of the k-th order Markov

source and, hence, the degradation caused by the edge

effect is O(%) in the average codeword length. In the

following argument, we neglect the edge effect for the
sake of simplicity. For more details of the edge effect,
see Note 1 in this section.

For context ¢ € C and symbol a € A, let N(c)
and N(a,c) denote the frequencies of ¢ and ac in z?,
respectively. Then the next theorem holds.

Theorem 1: When the sequence y” is encoded by the

Y
context ¢; Y2 N(c)
context ca N(e)
context ¢z N(cs)

context ¢i| : N{cp)
I YN
k
Fig. 1 M(zV).
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MTF coding scheme and a universal code of positive in-
tegers, which satisfies Property 1, the codeword length

per symbol is bounded by
N N(c)+ A
wsy ¥ Meds (TUES), o

c€C acA(c)

where A = |A|l. (When N(a,c) = 0, we use a conven-
tion 0f(c0) = 0.)

We note that this theorem is an extension of the
coding theorem for the MTF coding scheme [ 10, Theo-
rem 1].

Proof: As shown in Fig. 1, symbols with the
same context are grouped in yV. Let yV =

yé\lf(m) N(e2) ..yé\((c‘c') and, for each ¢ € C, yN(c) =

YerYe2 - - Yen(c), Where yu’s are the symbols that are
classified into a group of context c. Assume that yN(C)
N(c) _

are encoded to a sequence of positive integers zc
ning---mj---nn() by the MTF coding scheme, and
symbol a € A appears at indexes j = t1,%2," ", IN(a,c)

in 42, Then we have

< A, forj=1
= tj—tj 1, fOI‘2§j§N(a,Cz)

because n; obtained by the MTF coding scheme is
bounded above by the size of list L and the index inter-
val of the same kind of symbols.

Since n; is encoded to a binary sequence by a uni-
versal code of integers, the codeword length of which is
bounded by f(n;), the sum of codeword length of the

same symbol a occurred in y ©

N(C))
N{a,c)

A+ D flti—ti)
=2

~ N g T

is given by

Ln(aly,

Cs_)N(a, of (%) . “

where the inequalities hold by the following reasons.

a) Jensen’s inequality and the concavity of f(s).
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b) f(s) is monotonically increasing.
C) tN(a,c) < N(C)

Hence, using the convention of 0f(c0) = 0, (4)
holds for any a € A and ¢ € C. The codeword length
per symbol is given by

N2 ET Y Laahl©)

c€C acA( c)
(.§&Zf>' ®

SIDNE
QED.

c€C ac.A(c)

Note that it is difficult to derive the probability dis-
tribution of ¥~ because of the sorting procedure. How-
ever, the upper bound of L(y") given by (3) is described
only with N(a) and N(a, c) which can easily be known
from V. Hence we can evaluate L(yN) by using the
probability distribution of @ zN

Now we give the main theorem.

Theorem 2: Let ELpg(X ™) be the expected codeword
length of ZV for the stationary ergodic ﬁmte order

Markov source with the entropy H(X) = hm ZH (xh.

Then for any € > 0 and sufficiently large N
ELps(XN) < H(X) 4 O(log H(X)) +e. (6)

where O(log s) = 2log(s + 1) + 1.

Proof: Let P(c) and P(alc) be the probability distri-

butions of context ¢ and symbol a under context ¢, re-

spectively, for the stationary ergodic k-th order Markov

process. Then the set of typical sequences 7' (V) is de-

fined as
TWN) —

— P(c)| £ &y,

{ :‘N—kJrl
N(a,c) N—-k+1
N—k N(e)

- P(a|c)‘ <eg
forallac A andceC},

Then we have from the law of large numbers that
Pr{TM} =135, (7

where § can tend to zero by letting NV sufficiently large
for any g¢ > O[1].
Since k is fixed, 7(") can be described as

TW) = {aN : ’—]\% — P(c)| < &1,
g - PG| <

for allaEAandceC},
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where £; — 0 when g9 — O.

We first evaluate the codeword length Lpg(ZV) of
the BS method for the case where ZV € 7(V).

Since ¢V and R(z") can be encoded with L(y)
and [log N|/N bits per symbolf, respectively, letting

C* = {c:ce Cand P(c) > 0} and A*(c) = {a :
a € A and P(alc) > 0}, we have
Lps(@")
_ N [log V|
=L(y") + N
N{a,c) (N(c) + A>
f
o ae;@) N(c) N(a,c)
[log N']
e
N(a,c)f<N(c) +A>
o acarie V() N(a,c)
log N +1
* T
< Z ¢)+e1) Z (P(alc) +€1)
cec* a€A*(c)

1 A
x f(P(a|c) — & + N(a,c

=> P(e) Y Plalo)f

log N +1
)y

cec* a€A*(c)
RIRCIN, :
e P(alc) —e;  N(a,c)
ceC* a€A*(c)

T2 X F

ceC* ac A*(c)

A
rad, 2 f( >_51+N<a,c)>}
ceC* a€ A*(c)
log N +1

+ = (8)

From Property 1, f(s) is a continuous function and
1 o
f (W) is finite for any P(a|c) > 0. Furthermore,

N(a,c) — oo as N — oo for P(c)P(alc) > 0. Hence we
have

Lps(zN)
1
< P(c) Plalo)f| =——= | +e
0 3 rear(mi)

:Zp

ceC

(© 2, Plald (ram) te ©

where g5 — 0 as N — oo, and the last equality follows
from the convention 0f(co) = 0.

If we use Elias §-code[12], which satisfies f(s) =
log s + O(loglog s), (9) becomes
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Lps (@)
< P(c P(alc) log ———
; a%; ( c)
1
+>» P(e P( ajc)O(loglog )
2 P02, P
+ 5. (10)

Applying Jensen’s inequality to the summation of A
and C, (10) is further bounded by

Lps(@Y)

<Y " P(c) > P(ao)

ceC acA

+O<10gZP ZP(@I ) log

ceC aEA

1 1
% P(ale)

(|)>
+65

= H(X) + O(log H(X)) + &2, (11)

where

= ZP ZP alc)log

ceC acA

<|>' (12

Next we consider the case where ZV ¢ 7() Since
n; obtained by the MTF coding is always bounded by
n; < A, we have

)< 4y + BN

< f(4) + e
= log A + O(loglog A) + &3, (13)

Lys@V

where e3 — 0 as N — oo.
From (7), (11), and (13), the expected codeword
length ELps(XY) is given by
BLps(XN)= > P@E")Lps@")
TN AN
= Y P@E")Lss@")
ZNeT(N)
+ > PEM)Lps@V)
TN ET)
< H(X) + O(log H(X)) + 3
+ 6(log A + O(loglog A) + €3)
< H(X) + O(log H(X)) + é4,

where g4 — 0 as N — oo. Q.E.D.

Note 1: % rows with prefix z;---
0<I<k-—1,in MEN

T1TN - TN —k41+1,

) have the so-called edge effect

fIf block size N is not fixed, N also must be encoded
by a universal code of positive integers. However, this ad-
ditional rate can be bounded by f(N)/N, which becomes
(log N + 2log(1 + log N) + 1)/N if Elias é-code is used.
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as mentioned before in this section. But y; of any row
can be encoded with at most f(A) bits. Furthermore,
ifyy =y; £ y; forl <4 < j, then n; obtained from
y; is not affected by y; in the MTF coding scheme. In
other words, each y; affects each kind of symbol only
once and, hence, each y; affects at most A symbols of
yN . Therefore, the total edge effect can be bounded by

K (A+1)£(4), which is O(£).
Note 2: We proved Theorem 2 for the case where the
reversed block 7%, instead of z%, is encoded by the BS
coding. However, for the case of the non-reversed zV,
we have the same bound

ELps(XY) < H(X) 4+ O(log H(X)) + ¢ (14)
because of

1
H(X) = lim H(X:Xy - Xy)

N—oo

. 1
= 1\}51100 YV—H(XNXN_:L s Xl).
Note 3: We note that the bounds (6) and (14) do
not attain the entropy since they have an additional
term O(log H(X)). However, this term can be re-
moved by the so-called symbol extension. Letting u; =

mnmj(j_l)H for zV with N = mL, we have H,,(U) =
) 1 ..m

Jim, THOD:-+-00) = Jim GHXK-X) =

mH(X). Hence, encoding UL by the BS coding, the

expected codeword length of U is bounded by

ELps(U*) £ Hp(U) + O(log Hy(U)) + €
= mH(X)+ O(logmH (X)) +¢
< mH(X) 4+ O(logmA) +e.

This means that the expected codeword length per sym-
bol z is bounded by

1
EL)(xV) & —ELgs(U")
log m.A
< H(X)+O<°gnT ) te

< HX)+é,

where ¢/ — 0 as N — oo and m — oo.

Theorem 3: Let ELUY(XN) be the expected code-
word length of the m-symbol extension of zVV = z™L
for the stationary ergodic finite order Markov source.
Then for any & > 0 and sufficiently large m and N we
have

ELG(XN) < H(X) + . (15)

4. Concluding Remarks

We proved that the BS method with symbol extension
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is asymptotically optimal for stationary ergodic finite
order Markov source. '

We note that the Context Sorting (CS) method pro-
posed by Yokoo and Takahashi [ 7] uses the similar cod-
ing technique to the BS method and it is proved that the
CS method with symbol extension is asymptotically op-
timal. The CS method is a sequential algorithm and,
hence, symbols with the same context are sequentially
encoded. But, since the BS method is a blockwise al-
gorithm, symbols even with the same context may be
disordered by the sorting. Therefore, the proving tech-
nique of the CS method cannot be applied to the BS
method.

The asymptotic optimality of the BS method (and
the CS method[7]) are attained by the symbol exten-
sion. However, it is known that the BS and CS meth-
ods can attain high performance without the symbol
extension in practical uses[2]-[7]. Hence, it might be
possible to prove the asymptotic optimality without the
symbol extension. We note that Sadakane[9] proved
the asymptotic optimality, though his analysis lacks ac-
curacy, for the case where the B-W transform output 3™
of the stationary ergodic finite order Markov source is
encoded to a binary sequence by two path arithmetic
code without the MTF encoding.
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