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Window and Extended Window Methods for Addition
Chain and Addition-Subtraction Chain

Noboru KUNIHIRO' and Hirosuke YAMAMOTO!, Members

SUMMARY The addition chain (A-chain) and addition-
subtraction chain (AS-chain) are efficient tools to calculate power
Me (or multiplication eM), where integer e is fixed and M 1is vari-
able. Since the optimization problem to find the shortest A (or
AS)-chain is NP-hard, many algorithms to get a sub-optimal A
(or AS)-chain in polynomial time are proposed. In this paper,
a window method for the AS-chain and an extended window
method for the A-chain and AS-chain are proposed and their
performances are theoretically evaluated by applying the theory
of the optimal variable-to-fixed length code, i.e., Tunstall code,
in data compression. It is shown by theory and simulation that
the proposed algorithms are more efficient than other algorithms
in practical cases in addition to the asymptotic case.

key words: addition-subtraction chain, Tunstall code, canonical
signed binary representation, window method

1. Introduction

Calculation of powers plays a main role in several cryp-
tosystems, prime testing algorithms, or integer factoring
algorithms. For instance, the enciphering (and deci-
phering) of RSA scheme is given by M€ mod n, where
M is a plaintext (ciphertext) and e is a public (secret)
key. Since the key length is usually more than 500 bits,
we need an efficient algorithm to calculate the powers.
The fast calculation can be realized by reducing the
number of multiplication as small as possible and/or
speeding up the operation of multiplication. In this pa-
per, we consider the former problem, i.e., how to reduce
the number of multiplication.

It is well known that the powers can be calculated
efficiently by using the addition chain[1]. Suppose that
M¢ can be calculated like M? — M% — M — ... —
M4 (= M¢) based on a rule:

M% = M% x M%, j k <i. (1)

Then the sequence of exponents a;, {ap(= 1), a1,az,
---,ar(= e)), is called an addition chain since this se-

quence satisfies the relation
a; = a; +ag, Jk<i. )

Our main purpose is to find an efficient algorithm to
derive a short addition chain for a given e. Since the
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addition chain does not depend on M, the calculation
based on the addition chain is efficient when M is vari-
able and e is fixed*.

The addition chain (A-chain) is applicable not
only to the power operation but also to arbitrary group
operations. Recently, several cryptosystems based on
the Abelian group defined over elliptic curves are pro-
posed, in which an inverse element can easily be ob-
tained. Hence, for such groups, the computation rule
can be extended to

gk <. (3)

The chain satisfying this rule is called an addition-
subtraction chain (AS-chain). The A-chain can be con-
sidered as a special case of the AS-chain, but we use
A-AS-chains to stand for both the A-chain and AS-
chain.

Since obtaining the shortest A-AS-chains is NP-
hard [3], restricted A-AS-chains, e.g., the star chain[1],
are considered or some algorithins are proposed to at-
tain shorter A-AS-chains[1],[4]-[7]. However, since
such algorithms are heuristic, it is not known how they
are close to the optimal even in some restricted class of
A-AS-chains.

In this paper, we propose a window method for
the AS-chain. We also propose the extended window
method, for the A-AS-chains, which generates a special
case of the star chain, but it includes many known meth-
ods, e.g. the binary method[1], the window method
for the A-chain[l1], Morain-Olivos (MO) method [5],
Koyama-Tsuruoka (KT) method[7] and our window
method for the AS-chain as special cases. For the ex-
tended window method, we derive a theoretical lower
bound of the chain length by invoking the source coding
theorem for variable-to-fixed length codes. This coding
theorem also brings us efficient algorithms based on the
Tunstall code, which are optimal in the sense that they
can attain the above lower bound asymptotically. Fur-
thermore, it is shown that the proposed methods are
more efficient than known methods[1],[4]-[7] in prac-
tical cases.

In this paper, the base of logarithm is 2. We
use notation 1 = —1 to represent signed binary num-
bers. Note 1 = 1,0 = 0, etc. Furthermore, letting

Ay = Gy j:’ak,

*Exponentiation M® where M is fixed and z is variable
can be efficiently calculated by other methods. Refer, e.g.,

[2].
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Seq = sos1...s51,5 € {1,0,1}, be a signed binary
sequence, then |Seq| stands for the length of Seq, i.e.
L, and Seq = 305, ...5_;. Although the ordinary bi-
nary representation of a given number is unique, the
signed binary representation is not unique, which may
be given by, e.g., Booth algorithm[8],[9], Koyama-
Tsuruoka algorithm[7], etc. For instance, (23);9 =
10111 = 101001. Note that Booth algorithm generates
the canonical signed binary representation (CSBR) that
are sparse and minimal, i.e., no nonzero bits are adja-
cent and the number of nonzero bits is minimal.

We assume for simplicity that letting Seq. be the
binary representation of e, each bit s; of Seq. occurs
with p = Pr{s; = 0} and ¢ = 1 —p = Pr{s; = 1} except
the most significant bit (MSB)!. The MSB of Seq, is
always one. We represent the bit length of the exponent
e by d = |Seq.| = [loge| + 1.

2. Window Method for the
Representation

Ordinary Binary

For a given e, a simple addition chain can be obtained
by the so-called binary method[1], in which a; is re-
peatedly doubled by a; = 2a;_; initially from ap = 1
until a; satisfies ¢/2 < a; < e, and each a;_; is added
if the i-th bit is one in the binary representation of e.
For instance, e = 50 = (110010)5 can be obtained by an
A-chain (1,2,4,8, 16, 32,48(= 32 + 16),50(= 48 + 2)).
However, the binary method is not efficient, especially
when e is a little less than 2. On the other hand, it
is known that obtaining the shortest A-chain is NP-
hard [3] for the general addition rule given by Eq. (2).
Hence, several restricted A-chains have been considered.

If j is restricted to ¢ — 1 in Eq.(2), the chain is
called star chain and its property is studied in [1]. But,
since it is still difficult to derive the optimal star chain,
we must narrow the addition rule furthermore.

In the window method [ 1], the addition is restricted
to the following two rules.

a; = a;—1 + a;—1 = 2a;_3 4
a; = ai—1 +ag, ar € Dy, &)

where D, is a set of integers that have length  in the
binary representation with MSB= 1. Integer & is called
window length. The first rule is the doubling rule like
the binary method while the second is the star chain
rule, but a;, must be in D,. In the window method, the
shortest addition sequence (A-sequence)’ is first calcu-
lated for integers included in D,,, and the A-chain for e
is constructed by applying (4) and (5) to the binary rep-
resentation of e, Seq.. For instance, in case of Kk = 3 and
e = 172, we have D, = {4,5,6,7} and the A-sequence
for D, is given by (1,2,4,5,6,7). Since

Sege = 101 0 110 0,
N N
5 6
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the remaining A-chain becomes (5,10, 20, 40, 80, 86(=
80 + 6),172).

We note that if ar, = 2ay, ie., ap is even, then
2a;—1 + ar = 2(a;_1 + @) holds. This means that,
by exchanging the applying order of the doubling and
star chain rules, we can use odd number &y, instead of
even number ay, in (5), i.e., D,, which consists of odd
integers less than 2%, instead of D,,. For the above ex-
ample, we can use D, = {1,3,5,7} with A-sequence
(1,2,3,5,7), and the remaining A-chain for e is given
by (5,10, 20,40,43(= 40 + 3),86,172) because of

Seg, = 1010 11 00.
S~ N
5 3

Since the A-sequence of 75,3 is usually shorter than the
one of D,;, we should use D, rather than D,,.

When k = 1 in the window method, then, for in-
stance, A-chain of e = 50 = (110010), is obtained as
(1,2,3(= 2 +1),6,12,24,25(= 24 4+ 1),50). The length
of this A-chain is equal to the one derived by the binary
method!t. Hence, the binary method can be considered
as a special case of the window method.

The average chain length lyp for the window
method is given as follows.

Theorem 1: The window method for the ordinary bi-
nary representation Segq, satisfies

p—p°
1-p

d
lwg ~d— (/{— >+ 5 +2n_1, (6)
K,-l-m

where d = [loge] + 1 and  is the window length'f1T.
Proof: The proof is shown in [10]Fi1T, 0

3. Window Method for CSBR

The binary method can be applied for the AS-chain.
Actually MO method[5] is the binary method for the
CSBR. We now show that the window method can also
be applied for the CSBR.

Window method for CSBR

1. Obtain Seq. with CSBR by applying Booth Algo-
rithm to e.

2. Set the window length .

3. Construct the A-sequence (1,2,3,5,---,2(2" —

Practically, p and g may be determined from the fre-
quencies of 0 and 1 in Sege.

In the A-chain, a given number occurs at the end. On
the other hand, in the A-sequence, given numbers occur in
the sequence.

Tt Refer [1] for the details of this equivalence.

1t Although Eq. (6) does not hold with equality exactly,
the right side is very tight approximation of lwz.
M1 Equation (6) can also be derived from Eq. (11)—~(13).
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Table 1  Performance of proposed method and theoretical bounds.
A-Chain AS-Chain with CSBR
Window Method Lower Bound Window Method Lower Bound
bit lws K+1 lgg | K+1 lws K+1 Ilgs | K+1
512 609.3 | 16(x =5) 607.7 20 598.9 | 21(k =6) 594.7 16
1024 || 1197.3 | 32(k=6) | 1196.3 32 || 1181.3 | 21(s =6) | 11754 26

(—1)*%) — 1), which contains all odd numbers less
than 2(2% — (=1)").

4. The sequence Seq, is processed from the MSB in
the following two phases. We call “phase 1 + phase
2” one cycle.

Phasel Read xbits from Seg.. Let the « bits be

8081 -+-Sg—1—1 0---0 where Sr—1—1 #: 0, and
l

(8081 -..8k—1-1)10 = @. Note that @ is posi-
tive if so = 1 or negative if so = 1. First apply
the doubling rule x — [ times. Next apply the
star chain rule, a; = a;_1+a, and finally apply
the doubling rule ! times. Remove the x bits
from Segq..

Phase2 If Seq.

where s; £ 0,

— 0"'05l8l—|—1"'
!

then apply the doubling rule [ times. Remove

the I bits from Seg..

We show a simple example. Assume that e

74539254.

1. Seq. = 100100100101010000100001010
2. Set k = 4.
3. (1,2,3,5,7,9).

4. Seq. is parsed as follows.

%%/00//19_973/0//%(%0/000//{/000/0//l_ogl,o//,

where “/” means the parsing in Phase 1 and “//” stands
for the parsing in Phase 2, ie., the end of one cy-
cle. The remaining AS-chain for e becomes (9,18,36//,
72,144, 288, 576,(_7) 569, 1138/ /, 2276, 4552, 9104,(_s)
9099, 18198, 36396, 72792, 145584/ /,291168, (.1 261169,
582338, 1164676, 2329352, 4658704/ /,9317408,18634816,
3726932, (_5) 37269627, 74539254) ,where “, ” means the
doubling rule while “,1z” stands for the star chain
rule. Furthermore, “//,” corresponds to the end of one
cycle with the doubling rule. The total length of this
chain is 32(= 5 + 27).

The average chain length lys in the window
method for CSBR is given by the following theorem.

Theorem 2: The window method for CSBR satisfies'

lws = d+

g (R_ 1
1-pq (2 = po)(L — po)
(—(L=po))*  Po”
+1—m)

2 —po
d+ 1—qpq

1 (—(1=po))~~*
K+ @ poyape) T o

2,‘1 - (_1)11
3 7
where po = (1 — 3pg)/(1 — 2pg)-
p=q=1/2, Eq.(7) becomes

, . 4.1 1
= — | —lrk=-c+=
we 3 3 340552

+

(7

Especially when

d+2/3 28 — (=1)"
. (8)
A
Proof: The proof is given in [10]. |

Iwg and lws are shown for d = 512 and 1024 in
Table 1.

We note that the window method can be con-
structed for any signed binary representation. Actually
KT method[7] is a window method for a non-sparse
signed binary representation, in which zero tends to run
long. For any signed binary representation, the average
length of the AS-chain is given by d+d/A+ B, where A
and B depend only on the window length and adopted
signed binary representation. When p = 1/2, we note
that from Eq. (8) the window method for the CSBR has
A~ r+%and B=(2"—(~1)%)/3—(x—2) for a
little large «, e.g., & = 5. Now assume that the window
method for a given (non-sparse) signed binary represen-
tation has A = k+ ;—L +p and B = 21—t —k for some
p and t. KT method has t = —3/4 and p = 1/6[7].
Then we have the following theorem.

Theorem 3: In case of the window method with x = 5
for p = 1/2, the CSBR is more efficient than a given
non-sparse signed binary representation if it satisfies

w< 4 —log(t+13 — ). 9)

Proof: Let ko be the window length'™ that minimizes
the chain length for the given non-sparse signed bi-
nary representation. Then letting x. = ko + p be the

t Although Eq.(7) does not hold with equality exactly,
the right side is very tight approximation of lws.
' For simplicity, xo is assumed to be real.
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window length for the CSBR, which may not mini-
mize the chain length of the CSBR, two representa-
tion have the same A. Hence, the CSBR is more ef-
ficient than the given signed binary representation if
(2Fc — (—1)%)/3 — (K, —2) < 270~ — ¢ — kg, By substi-
tuting kg = k. — ¢ and k. = 5,6, - - - into this inequality,
we obtain Eq. (9). O
Theorem 3 implies Corollary I.

Corollary 1: The window method for the CSBR is
more efficient than KT method.

Proof: By substituting¢ = —2 and p = 1/6 into Eq. (9),
we obtain 1/6 < 4 —log(—3 + 13 — %) ~ 0.405. a

4. Extended Window Method

In the window method, the star chain rule in Eq. (5)
is restricted to Dy, which consists of binary numbers
with fixed length, or equivalently to D, which consists
of all odd integer less than 2®. In the following, we
remove this restriction, i.e., we assume that any set! of
odd numbers D can be used instead of D,. The ex-
tended window method can be roughly considered as
a method which uses D instead of D,, but it should
be emphasized that many known methods, e.g. the win-
dow methods, MO method, KT method, etc., are special
cases of the extended window method.

Roughly speaking, the A-chain of the extended
window method is obtained by the following two steps.

Step 1. Construction of D.

We first determine D = {ao(= 1),a1,---,ax},
each element of which is an_odd number. Next
we make an A-sequence for D, i.e.,

(ag(=ao = 1),a1(= 2),a2,- -, ax+s(= @xK)),
where a; = a; + ax (4, k < 1),

that includes all a;, i.e. {ao, -, aKx+s} 213. Note
that § > 1 because a¢; = 2 must be included in any
A-sequence, but the A-sequence for D should be
devised in such a way that § becomes as small as
possible. Since K is not usually large and the dif-
ference between &; and @, is usually small, the
optimal A-sequence for D can easily be obtained.
Step 2. Construction of A-chain for e

The remaining A-chain for e
(bo(= @), b1, b, ...,bo(=e)), where G, € D

is obtained by applying the following two rules:

Doubling rule:  b; =b;_1 + b;—1 = 2b;_1,
Star Chain rule: b; =b;—1 +a;, a; € D.

By concatenating the above A-sequence and A-chain,
we obtain the whole A-chain as follows.
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(ap(=1),a1, *,ax+s,b1,b2,- -, b (=€),  (10)

where the chain length is 7 + K + 6.

We now describe the detailed, but general, algo-
rithm to realize the above extended window method.
The algorithm is described for the A-chain, but the case
of AS-chain is shown in parentheses.

Detailed Algorithm of Extended Window Method

Step 0. Representation of e.

Represent a given positive integer e as the ordi-
nary binary number (a given signed binary num-
ber), say Sege.

Step 1. Construction of D.

(a) Determine D = {ag,a1, - -,ax} in the fol-

lowing way. Determine binary sequences
Seq;, 7 = 0,1,2,---,K such that Dp =
{Seqo,Seqy -+, Seqr} and 0%, zero se-
quences with arbitrary length, can parse Seq,
uniquely. It is worth noting that since 0* can
be used (and Segq; can be used in the case of
of AS-chain), the MSB of every Seg; should
be one (Furthermore, if the CSBR is used
for Seg., Seq; should be sparse since Seq,
is sparse).
For each Seq; € Dp, let Seq;- be the binary
(or signed binary) sequence obtained by re-
moving less significant 0 running bits of Seg;.
Letting @, be the decimal number of Seq;-, we
obtain D = {dg, @1, --,dx }. Note that all &;
are positive odd numbers.

(b) Make the shortest A-sequence (AS-
sequence) (ao(= a9 = 1), a1, -, ax,
---,axs) that satisfies Eq.(2) ((3)) and
{ao, A1, , (IK+5} 2'D

Step 2. Construction of A-chain (AS-chain) for e.

Parse Seq. from the MSB based on Dp =
{Seqo, Seq1,- -+, Seqr} in the following way.

Phase | (a) Find Seg; (Seg; or Seg;), which equals
to the prefix of Seq.. Let a; be the dec-
imal number of Seq; which is obtained
from Seg;.

(b) If Seg; is the first parsing, then let by =
d;, and go to step (d). Otherwise, apply
the doubling rule |Seq;| times.

(c) Apply the star chain rule: b; = b;_1 +a;
(bi :{bi_l + 21 ff% is used in (a))

bi—1 — aj, if Seg; is used in (a)

(d) Again apply the doubling rule |Seg;| —

tExactly, D must satisfy some conditions. See the de-
tailed algorithm of the extended window method.
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Table 2  Classification of previously proposed methods.

BR/SBR K+1 512 bits
Binary[1] BR 1 ‘ 768
Window all BS with 609.3
(1] BR length « 2et (k=5)
MO [5] CSBR 1 682
KT SBR(minimal | all SBS with L 602.6
(7] non-sparse) length % 35 (k= 5)
Adaptive
EW with BR (Algorithm 1) 609.3
TA Adaptive . -
CSBR (Algorithm 2) 598.9
Window all sparse SBS 598.9
for CSBR CSBR with length « | (2° —(=1)%)/3 | (k=6)

BR/BS: Ordinary binary representation /sequence.

SBR/SBS: Signed binary representation /sequence.

EW with TA: Extended window method with Tunstall-like Algorithm
The MSB of BS and SBS in Dp is 1. & is an integer.

lSeq;| times.

(e) Remove the prefix Seq; (Seg; or Seg;)
from Seqe.

Phase 2 (f) If the prefix of Seq. is0---01 (0---01

t t
or(---071), then apply the doubling rule
t
t-times.
(g) Remove the prefix 0---0 from Seq,.
t
If Seq. becomes null sequence in Phase 1 or
2, then finish this algorithm. Otherwise, re-
peat Phase 1 and Phase 2.

We call “Phase 1 + Phase 2” one cycle. Note that in
Phase 1 of Step 2 any Seq; happen not to be a pre-
fix of Seg. when the length of Seq. becomes short. In
such a case, find Seg; that satisfies Seq; (Seq; or Seg;)
= Seq. 00 -t- -0, and perform (b) and (c). Finally, apply
the doubling rule |Segq,| — |Seq;-[ — ¢ times in (d).

How to construct optimal Dg = {Seq;} and the
computation complexity of this process will be treated
in Sect.7. Note that this complexity need not be in-
cluded in the computational complexity of M¢ (or eM)
because e is fixed in our case and Dp depends only on
e. In order to parse Seg. based on Dg and 0* in the
extended window method, we need a little additional
task compared with the window method. However the
computation complexity of the parsing is O(log K) by
using the so—called parsing tree. Since K < d holds,
the time of parsing is negligible.

We show an example of the CSBR for e =
74539254, which is the same treated in Sect. 3.

Step 0. Representation of e.
Seg. = 100100100101010000100001010

Step 1. Construction of D

(a) Pp = {Seq} = {1000,1010,1010,10010,
10010} with K +1 = 5, Dp = {Seq'} =
{1,101,101,1001,1001}, D = {a} =
{1,5,3,9,7}.

(b) (1,2,3,5,7,9).
Step 2. Construction of the AS-chain for e

Seq. is parsed as follows.

@99_1,0/0//1\(_)2;0//%0%0/000//\1/000/0//%?0//,

where “/” means the parsing in Phase 1 and “//” stands
for the parsing in Phase 2, i.e., the end of one cycle.
Although the parsing is slightly different from the one
described in Sect.3, the exactly same AS-chain is ob-
tained.

Table 2 classifies known methods in terms of the
extended window method, i.e., based on the representa-
tion of Seq,, Pg, and the size K + 1 of D. In the table,
the window method for CSBR and the extended win-
dow method with Tunstall-like algorithm described in
Sect.7 is included. The last column shows the average
chain length obtained by computer simulation when € is
randomly generated with 512 bits. Note that any meth-
ods included in the extended window method can easily
be implemented.

Yacobi[6] and Bos-Coster[4] proposed other
methods for the A-chain, which cannot be classified in
the extended window method. Yacobi’s method is based
on LZ78 code, which is one of universal data compres-
sion codes, and the size of Dy is not fixed. We note
from the computer simulation that the average chain
length attained by his method is about 635 when e is
512 bits, and hence it is inefficient. Bos-Coster’s method
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is a heuristic method with a large window, and the aver-
age chain length attained by their method is about 605
when e is 512 bits.

5. Lower Bound of Average Chain Length

5.1 Chain Length Attained by the Extended Window
Method

We now analyze the chain length attained by the ex-
tended window method for A-chain and AS-chain with
CSBR. We assume that e is randomly generated, but

= |Seqe| = |loge]|+1 is fixed, and each bit of Seq, ex-
cept the MSB is 0 with probability p in the ordinary bi-
nary representation or with po in the CSBR. The length
r shown in Eq.(10) is explained as r =(the number of
applied star chain rule) + (the number of applied dou-
bling rule). Since, in steps (b), (d) and (f), the doubling
rule is apphed to every bit of Seq, except the first pars-
ing Seq]( ), the latter number equals to d — |Seq;(1)|.
Similarly, since the star chain rule is applied for every
cycle as shown in (c) of Phase 1, its average number is
given by d/Lcycie, where Leyq. is the average length of
one cycle. Hence, the average length of total chain Iz
is given by

lp =d— [Seq;(1)|ay + + K +6, (11)

cycle
where [Seq);(1)|4v is the average length of Seq}(1). Let-
ting P; be the probability of Seg; or Seq; in (a) of
Phase 1, the second and third terms of Eq.(11) can be
represented as follows.

1Seq}(1)] a0 = Z|SquIP < Z|seqj| (12)

oo K
cycleézz [S@qj|+l P q](l)

=0 j=0

Yoico |Seq;| P +p/(1—p),
in case of A-Chain
= K (13)
>0 |5eq; | P + po/(1 = po)
in case of AS-Chain for CSBR

where g¢; (1) is the probability that [ continuous 0’s oc-
cur after Seg;, and it is given by g;(I) = p!(1 —p) in the
case of A-chain and ¢;(I) = po'(1 — po) in the case of
AS-chain with CSBR. The first term of Eq. (13) equals
to the average length of Phase 1 while the second term
is a bound of the average length of Phase 2.

5.2 Lower Bound of Chain Length
In this section, we derive lower bounds of [ in the ex-

tended window method for given d and p (or pg). First
we consider the case of A-chain. Since |Seq}(1)|sy in
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Eq. (11) becomes negligible compared with the last two
terms as d becomes bigger, the last two terms should
be minimized to attain the shortest A-chain for large
d. Hence, from Egs.(11) and (13), we minimize the
following function.

d
K P
2 j—o |9eq;| P + 155

We separate this minimization problem into two
sub-problems.

f(Dp) =

+K+6. (14)

Problem A: Obtaining the optimal Dp = {Seq,}
which maximize Z;io |Seq,|P; for a given K. Let
g(K) be the maximal value.

Problem B: Determine the optimal K that minimizes
d
ploq + K +6.

Concerning these problems, the following lemmas
hold.
Lemma 1: Zj{:o |Seq;|P; satisfies

log(K +1)

K
Seq;|P; <1+
Z’ .7| J H(p)

=0

) (15)

where H(p) is the binary entropy function given by
H(p) = —plogp — (1 - p)log(1 - p).

Proof: Problem A is equivalent to the optimization
problem of VF code shown in the Appendix. Hence,
from Eq.(A- 1) in the Appendix, we obtain the follow-
ing inequality.

K K
> 1Seq;|P; =Y (ISeq;| — 1)P; +1
7=0 §=0
log(K +1)
<ol (16)
H(p)
where one is subtracted in > J_O(ISqu| 1)P; because
the MSB of Seg, is always “1.” |
Lemma 2: f(Dg) has the following lower bound.
H(p)d
f(Dg) 2 (v) K46, (17

~ log(K+ 1)+ — H(p)

where H(p)d is the minimum attainable length when
Seq. is compressed in source coding.

Proof: By substituting Eq. (15) into Eq. (14), we obtain

d
f(DB) 2 1
og(K+1) P
ORI =

H(p)d
- +K+6.
log(K +1) + 11, H(p)

+K+6

O
Letting the right side of Eq.(17) be G(K), Prob-
lem B is equivalent to the problem of determining the
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optimal K that minimizes G(K). In small K, G(K)
decreases because the first term dominates it while in
large K, G(K) increases because of the second term.
This means that the optimal K exists.

Noting that |Seqi(1)|as = Zf:o \Seq}\Pj <
Z?:o |Seq;|P;, we have the following theorem from
Lemmas 1 and 2.

Theorem 4: The A-chain length of the extended win-
dow method, lgg, satisfies

log(K + 1)
i )
H(p)d
log(K + 1) + Ti—pH(p)

lEBEd—<

+K+6 (18)

Equation (18) holds only for the A-chain obtained
by the extended window method. For general addi-
tion rule Eq.(2), Schonhage[13] showed that the chain
length I must satisfy [ > d+log(1—p)d—2.13 for A-chain
of all e.

Next, we consider the case of AS-chain. Gener-
ally it is difficult to evaluate Ig for any AS-chain be-
cause each bit of signed binary sequence Seg. cannot
be treated as memoryless even when e is randomly gen-
erated. However, in the case of CSBR, each bit can be
considered as an output of a first-order Markov source
and its sequence can be transformed into a memoryless
sequence by removing every “0” just after a nonzero
bit. This reduction transformation is possible because
of the sparse property of the CSBR. We also note from
Appendix A.2 that the average length of Seg. is given
by d+¢q/(1 —pq) when Seg, is the CSBR. Farthermore,
the transformed sequence of Seq, becomes a memoryless
sequence with average length

1-2
dt:(d+ 1 ) “

1-pg) 1-pg’
and the probability of symbol j € {1,0,1}, p;, in the
transformed sequence is given by py = %, p1 =
2 2 . .
ke P1 = lf%pq. Letting S; (0 £ j £ K) be
the transformed sequence obtained from Seg;, (D)
is given by

f(Dp) =

dy
K
Zj:o ‘Sj|Pj + 2

1—po

K+ (19)

In the same way as the A-chain case, we obtain

K
Y ISP =1+

=0

log(K +1)
—_ 20

OO 20)
where H(X ) = «Zil:_lpi log p; is the entropy of the
transformed sequence. By substituting Eq.(20) into
Eq.(19), f(Dg) is bounded by

H(X)d,
/(P5) 2 log(K +1) + - H(X)

LK+6 @D
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Note that since H(X)d; is the minimum binary length
attained by compressing the transformed sequence of
Seq., it is bounded by H(p)d because H(p)d is the
lower bound of any binary representation of e. Since
H(p) = 1,H(X) = 3/2, and pp, = 1/2 in the case of
p = 1/2, we note by comparing Egs.(17) with (21)
that the AS-chain possibly becomes shorter than the
A-chain.

Letting S7(1) be the transformed sequence of
Seq;(1), we have, in the same way as the A-chain, that
the average length of S’(1) is bounded by log(K +
1)/H(X)+1. Noting that [Seq;(1)| < 2[S;(1)|, we have
the following theorem.

Theorem 5: In the extended window method, the AS-
chain length for the CSBR, [gg, satisfies

(o) s (5552

H(X)d,
log(K + 1) + y=5- H(X)

FE4+6 (22

Table 1 shows the comparison between lywp and
Iws given by Eq.(6) or (8), where the optimal k is
searched by computer simulation, and the lower bounds
of lgg and Igs given by Eq. (18) or (22), where the op-
timal K -+ 1 is found by exhaustive search. From the
table, we note that the window methods are almost op-
timal for p = 1/2 since their performance is very close
to the lower bound.

6. Asymptotic Performance of Extended Window
Methods

In this section, we consider the asymptotic performance
of the extended window methods for the ordinary bi-
nary representation and the CSBR.

In inequalities (13) and (15), the difference between
the right and left sides goes to zero when d — oo, K —
oo, and K/d — 0. Hence, for such large d and K, we
have

log(K +1
ZEBxd<M+1>

H(p)
H(p)d
log(K + 1) + 25 H(p)

LK 16 (23)

By substituting log(K + 1) = logd — 2log” d, we obtain

d dlog®d
lpp£d+H(p)—+ O | —— | .
mEdt B O (). @
Similarly, the following inequality holds for Igg.
1—2pg d dlog®d
lpe < d+H(X O (25
g5 < d+HX)7 ~pq logd <(10gd)2 @9

On the other hand, it is well known[1] that for
sufficiently large d, Iy satisfies
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d dlog®d
lwp <d+ —— —= ).
we < d+ Tog d + O ((10gd)2> (26)

Similarly lyg also satisfies that lys(d) < d + ﬁ& +
2
O (fiit)-

Comparing Egs.(24) and (26) and noting that
0< H(p),H(X)lT__QP%; < 1, we may say that for suf-
ficient large d the extended window method is more
efficient than the window method except the case of
p 4 1/2%. The same is also true when H(X)% + 1,
ie.p=£1/2, for CSBR.

When p = 1/2, we have that H (p) = H(X)ll—__gp%f =
1. Hence the bounds Egs.(24) and (25) coincide with
the well known results that the length of A-chain with
general rule Eq.(2) can attain d + d/logd asymptoti-
cally[14]. But when p % 1/2, Eqs. (24) and (25) means
that we can attain shorter chain length than d+d/logd
asymptotically.

7. Optimal Algorithm to Construct Dg

We now show how to construct the optimal Dp =
{Seq;|0 £ j £ K} for a given size K + 1 in the ex-
tended window method. As noted in Sect.5, the op-
timization problems A and B! are equivalent to the
optimization problem of VF code. Hence, the optimal
sequences Dg = {Seq;} can be obtained by using Tun-
stall algorithm[11],[12], which derive the optimal VF
code, as follows. The first one is for the A-chain while
the second one is for the AS-chain of CSBR.

Algorithm 1 (Tunstall-like Algorithm for A-chain)
1. Make the root of a tree with weight 1.

2. While the number of leaves is less than K +1, repeat
the following.

Let ! and weight(l) be the leaf with largest weight
and its weight, respectively. Create two children
with weight p x weight(l) and weight g x weight(l),
and connect them to ! via edges labeled with “0”
and “1,” respectively.

3. Get binary sequences by reading along the edges
from the root to leaves, and construct Dp =
{Seg;|0 £ j < K} by concatenating “1” to each
sequence as the MSB.

In order to accomplish this algorithm, we must
compare two leaf weights in Step2, totally K (K 4+ 1)/2
times to find the leaf with largest weight and we also
need some additional tasks to construct the tree. But the
computational complexity is small and the algorithm
can easily be implemented.

In the case of AS-chain for CSBR, canonical signed
binary sequences can be transformed into memoryless
sequences with probability p;,j € {1,0,1}, by the re-
duction transformation described in Sect.5. Since we
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can use both Seq; and Seq; in the parsing, we construct
Dg based on probability § = (p1 + p1)/2 = (1 — po)/2.

Algorithm 2 (Tunstall-like Algorithm for AS-chain
with CSBR)

1. Make the root of a tree with weight 1.

2. While the number of leaves is less than K41, repeat
the following.

Let [ and weight(l) be the leaf with largest weight
and its weight, respectively. Create three children
with weight po x weight(l), weight § x weight(l)
and § x weight(l), and connect them to ! via edges
labeled with “0”, “10” and “10,” respectively.

3. Get signed binary sequences by reading along the
edges from the root to leaves, and construct Dp =
{Seg;|0 < j £ K} by concatenating “10” to each
sequence as the MSBs.

The computation complexity of Algorithm 2 is al-
most same as Algorithm 1. It is worth noting that the
extended window method with Tunstall-like algorithms
(Algorithms 1 and 2) asymptotically attain the bound
of Egs. (24) and (25), respectively.

Next we consider the problem to optimize the size
of D, K + 1. However, since it is difficult to derive the
optimal K analytically, we must find it by exhaustive
search. When e is a sufficiently large random number,
we can assume by the law of large number that p = 1/2.
Hence, in the followings, we treat the case of p = 1/2,
which is important in practice.

First we consider the case of A-chain. We can show
by exhaustively search that for almost all d, f(Dg) of
Eq. (14) is minimized when K +1 = 25~ for some pos-
itive integer x. For instance, the optimal K’s are given
by K =15 =2*—1ford =512, K =31 =2° -1
for d = 1024, K = 63 = 26 — 1 for d = 2048, etc.
When K + 1 equals to 2°71, all sequences Seg; € Dg
obtained by Algorithm 1 have the same length . Since
such sequences are equal to the sequences used in the
usual window method, we can conclude that in the case
of A-chain, the usual window method is almost optimal
when d is sufficiently large.

In the case of AS-chain with CSBR, we can also
show by exhaustive search that for almost all d, f(Dg)
of Eq.(19) is minimized when K + 1 equals to (2" —
(—1)*)/3. For example, K = 20 = (26—(—1)®)/3—1 for
d=512 and d = 1024, K = 42 = (2" — (-1)")/3—1 for
d = 2048, etc. When K + 1 equals to (2% — (—1)%)/3,
each sequence Seq; obtained by Algorithm 2 satisfies
the following properties. 1) The MSB is “1.” 2) The

TIn fact we prove in Sect.7 that the window method is
almost optimal in the case of p = 1/2 for any large d.

tSince f(Dp) is minimized instead of Iz (or lms), the
derived Dz may be sub-optimal. But, it becomes optimal
when d is sufficiently large.
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length of sequence is x or k+ 1. 3) The least significant
bit (LSB) is always “0.” 4) When the length is x + 1,
the second LSB is nonzero. We note from these proper-
ties that when the above Seg; has length x + 1, we can
remove the (x4 1)-th bit of Seq; without increasing the
AS-chain length by postponing the process of (k+1)-th
0 bit to the second phase’. Hence, by such truncation,
all Seg;’s have the same length . This means that for
CSBR, the window method is almost optimal among
the extended window method.

We now consider the reason why the A-chain is
apt to be optimal at K +1 = 2*!. For 2¢ 72 <
K+1 < 2771, each Seq; occurs with probability 2~ (<~2)
or 2-(*~1)_ Hence, a gap of probability occurs at
K +1 = 271, Furthermore, § becomes the minimum,
i.e. one, at K + 1 = 2%~ 1, Therefore, the average chain
length is apt to be minimized at K +1 = 2%~ 1. The
similar argument holds for the AS-chain for CSBR.

Since there is little space to discuss the case of
p F 1/2, we show only an example that the ex-
tended window method is more efficient than the
window method.  The optimal sequences {Seg;}
for e with d = 512 and p = 0.15 is given
by {100, 1010, 1100, 10110, 10111,11010, 11011,11101,
11100,11---10, 1---1}, and the chain length is only

4,--,14 15 ‘
603 while the chain length of window method (x = 6)
is 621. Some results for the case of p = 1/2 are shown
in [15]. But the detailed study for such case will be
reported in another paper.

8. Conclusion

In this paper, the window method and the extended win-
dow method to calculate M© or e M were proposed, and
the theoretical bounds of the shortest AS-chain length
were derived. Furthermore, we showed that the optimal
Dp = {Seq;} used in the extended window method
can be obtained by Tunstall-like Algorithm, and the
extended window method with optimal Dpg can attain
the bound asymptotically. We also showed that even for
finite e, the extended window method is more efficient
than other known methods.
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Appendix
A.l: Optimal VF Source Code

The optimization problem of VF (Variable to Fixed)
source code is studied in [[1],[12], etc. In VF cod-
ing, a source sequence is parsed based on a set of se-
quences {Seqi, Seqq,- -+, Seqi }, where each length of
Seq; is not fixed, but {Seq:, Seqa, - -+, Seqx } is usually
required to satisfy the prefix condition for instantaneous
encoding. Each Segq; is encoded to a codeword with
[log K| bits.

Letting ¢; and P; be the length of Seg; and its prob-
ability, respectively, the average codeword length per
one source symbol is given by L = log K/ Zfil t,P;.
In order to minimize L we need to optimize codeword
size K and codewords Dp = {Seq;}.

The above problem can be separated into the fol-
lowing two optimization problems.

K
Probl A K)= tiPi,
em A : g(K) max ;

Problem B : min —1Og K
K g(K)

Since it is well-known from the source coding theorem

that L must be greater than the source entropy H(X),

the following inequality must hold.

"See the example in Sects.3 and 4. In fact, Dp shown
in Sect. 4 is constructed by Algorithm 2 under the condition
po=1/2and K +1=75.
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. log K
min
K g(K) ™~

When the sequence is memoryless, we know the
solutions of these two problems. For Problem A, the
optimal D to maximize Zfil t; P; is obtained by Tun-
stall algorithm [11]. Concerning Problem B, it is shown
that when we use Tunstall algorithm, the left side of
Eq.(A- 1) asymptotically converges to H(X) as K in-
creases.

H(X) (A1)

A.2: Canonical Signed Binary Representation

Assume that by Booth algorithm, Seg. is derived from

dbits ordinary binary sequence Squd), each bit of
which, except the MSB, is a memoryless source output
with p = Pr{s =0} and ¢ = 1 —p = Pr{s = 1}. In
Booth algorithm, one bit is inserted only if Squd) =
1(01)%1%, £ = 0,1, - -, where * and (01)* stands for ar-
bitrary sequence and £ repetition of “01”, respectively.
Since the MSB is always one, such case occurs with
probability

14521 d—2
i (qp)'q = g(1 — (gp)F 1)
prd 1—pgq ’

which can be approximated very closely by g/(1 — pg)
if d = 20. Note that we usually treat much larger d.
Hence, the average length of Seq. becomes d + ¢/(1 —
pq) bits. Let p; be the probability such that symbol *;”
occurs after symbol “0”. Then, it can be easily shown

1.3 _ p? o 2
that py = Tjg—g—,pl = 132‘;(1, and p; = 1f‘épq. For
p = 1/2, we have pg = 1/2 and p; = p; = 1/4. Further-
more, letting S, be the transformed sequence of Seg. de-

scribed in Sect. 3, we obtain from the relation |Seq.| =
|Se|(po +2p1 +2p1) that |Se| = [Seqe|(1—2pg)/(1—pg).
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