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The Redundancy of Universal Coding with a Fidelity

Criterion

Daiji ISHII' and Hirosuke YAMAMOTO'!, Members

SUMMARY  The redundancy of universal lossy data compres-
sion for discrete memoryless sources is considered in terms of type
and d-ball covering. It is shown that there exists a universal d-
semifaithful code whose rate redundancy is upper bounded by
(A= 3) n~'lnn + o(n~'Inn), where A is the cardinality of
source alphabet and r is the block length of the code. This new
bound is tighter than known ones, and moreover, it turns out to
be the attainable minimum of the universal coding proposed by
Davisson.

key words:  universal d-semifaithful code, rate-distortion func-
tion, rate redundancy, n-type, d-ball covering.

1. Introduction

The redundancy, which is defined as the difference be-
tween average code length per source symbol and its at-
tainable limit, has been discussed in many literatures. In
the case of lossless data compression, many results have
already been obtained. For instance, the redundancy of
rate is O(n™1), wheren is block length, when source dis-
tribution is known while it is O(n~! Inn) when source
distribution is unknown[1]. On the other hand, in the
case of lossy data compression adequate results have not
been achieved although in 1968, Pilc gave some conjec-
ture about the redundancies of rate and distortion for
discrete memoryless sources [2].

In 1995, Zhang-Yang-Wei[3],[4] evaluated tight
redundancies of rate and distortion in lossy data com-
pression. It is shown in their paper that, when source
distribution is known, there exists a code such that the
rate redundancy (nats/source symbol) is upper bounded
by n7'lnn + o(n~!lnn), and is lower bounded by
in~'Inn + o(rn~!lnn). Furthermore, it it shown that
there exists a code such that the distortion redundancy is
—2d(p, R)n"Inn + o(n~!Inn), where d(p, R) is the
distortion-rate function for source distribution p and
rate R (nats/source symbol). This redundancy indicates
that Pilc’s conjecture with respect to distortion is true.
In their work, they discussed the redundancies in terms
of type and d-ball covering. In particular, Lemma 3
in[4], which is shown as Lemma 1 in this paper, plays
an important role in evaluating redundancies. However,

Manuscript received January 29, 1997.
Manuscript revised May 12, 1997.
'The author is with C & C Media Research Laborato-
ries, NEC Corporation, Kawasaki-shi, 216 Japan.
' The author is with the Department of Mathematical
Engineering and Information Physics, Graduate School of
Engineering, University of Tokyo, Tokyo, 113 Japan.

the problem of redundancy in universal coding with a
fidelity criterion has remained unsolved. Although Yu-
Speed[5] evaluated the redundancy, their result is not
tight.

In this paper*, we evaluate the redundancies of uni-
versal lossy data compression for discrete memoryless
sources, based on the approach of type and d-ball cov-
ering such as[4]. Moreover, we show that our results
are tighter than that of [S] and these are the attainable
minimum.

2. Preliminaries

Let X = {X;}2, be a memoryless source with a source
alphabet A = {1,---, A}, and let B={1,---,B} be a
reproduction alphabet. We denote n symbols from the
source by z™, and the set of all n symbols on A by A™.

Let p : Ax B — [0,00) be a single letter dis-
tortion measure. We assume p has an upper bound
Pmax < oo. For 2" = (z1,---,zi,--+,z,) and y™ =
(ya,--,¥i -+, Yn), the average single letter fidelity cri-
terion p, is defined as

n

1
pul”,y") = — > o vi).

i=1

The rate—distortion function with a source probabil-
ity distribution p and distortion level d is denoted by
R(p, d) while the inverse of R(p,d), i.e., the distortion—
rate function, is represented by d(p, R).

The n-type of 2™ € A" is defined as

where
Ha",a) = %|{i:mi=a}|, ac A )

| - | is the cardinality of a set. Let 7,(.A) be the set of
all n-types on A, and we define for each t € 7,,(A)

T3(t) = {z" € A" : t(z") = t}, (3)

which is the set of strings on 4™ whose n-types are t.
Similarly, let 7,,(B) be the set of all n-types on B, and
we define for each r € 7,,(B)

Ty(r)={y" € B" :r(y") =1}, 4)

*This work is first presented in[8] in Japanese.
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where r(y™) is the n-type of y™ € B™.
Furthermore, for (z”,y™) € A™ x B", the joint n-
type is defined as

s{z™,y") = (s(z™,y" 1 1,1), -+, s(2™, " s A D),
'75(1'”73/" :a,b),---,s(w",y" :A,B)), (5

where
1 ..
s(z™,y" s a,b) = El{(z,]):xiza,yj = b}|. (6)

Letting 7,(A x B) be the set of all joint n-types on
A x B, the set of strings with joint n-type s € T,,(A x B)
is defined as

Ty y(s) = {(z",y") € A" xB" : s(z",y") = s}.(7)

We next describe the d-ball covering. In general,
the d-ball centered at 2™ € A" is defined as

B(z",d) = {y" € B" : pu(a™,y") < d}. 8)

According to[4], the restricted d-ball for r € T, (B) is
defined as

B(z",r,d) = B(z"™,d) N Ty (r). (9)

Since the cardinality of B(z",r,d) depends on z"
only through the n-type t(z") = ¢, we denote it by
F.(t,r,d) =|B(z",rd)|.

Then, the following lemma holds.

Lemma 1 (Zhang-Yang-Wei[4, Lemma 3]): For suffi-
ciently large n,

InF,(t,r,d) £ nH,(t,r,d)

—nH(t) — glnn—i—cl Inlnn, (10)
InF,(t,r,d) = nHy(t,r,d)

—nH(t)——g—lnn—cz, (11)

where ¢1, ¢ > 0.
H,(t,r,d) in Lemma 1 is defined by

Hy(t,r,d)= sup H(s), (12)

seS(t,r,d)
where

S(t,r,d) = {s:t and r are the marginals of s,
and Esp(X,Y) < d}, (13)

and H(s) is the joint entropy of s € 7,(A x B).
H,(t,r,d) is called the upper joint entropy in[4]. More-
over,

Li(t,r,d) = H(t) + H(r) — H,(t,7,d) (14)
is defined as the lower mutual information. Note that

R(pyd) - Il(p7Q*’d)7 (15)

IEICE TRANS. FUNDAMENTALS, VOL. E80-A, NO. 11 NOVEMBER 1997

where * is the optimal distribution on B associated
with R(p,d).

In this paper, two kinds of redundancy, i.e., rate
redundancy and distortion redundancy, are considered.
For the rate redundancy of fixed distortion coding, we
introduce d-semifaithful code C,, as a fixed distortion
code that satisfies, for block length n,

pnu(z™,Cp) < d, for any " € A", (16)
where
n . . n ,n
pn(z"™,Cr) = in pn(x™,y"). (17)

Letting 7,(z",C,,) (nats/source symbol) be the code-
word length per source symbol when z" € A" is en-
coded by C,,, and letting 7,(C,,) (nats/source symbol)
be the coding rate, i.e., the average codeword length
per source symbol, then the rate redundancy of d-
semifaithful code C,, is defined as

Rn(cn) = 7'n(Cn) - R(p, d) (18)

Similarly the distortion redundancy of fixed rate
coding is defined. Letting p,(C,,) be the average dis-
tortion with respect to block code C,, whose rate is
R (nats/source symbol), the distortion redundancy of
block code C,, is defined as

Dn(Cn) = Pn(cn) - d(pa R)- (19)
3. Main Results

In this paper, we assume that a source is known to be-
long to a class of memoryless sources. However, the
probability distribution p of the source is unknown.
We consider the universal codes proposed by Davis-
son[5],[6], in which a proper code is prepared for each
n-type t and a source sequence 2™ is encoded by its code
if t(z™) = t. Encoded data and the information about
the n-type of the sequence are sent from the encoder to
the decoder. We call this kind of codes Davisson-like
universal codes.

The following theorems about the redundancy of
universal codes can be proved by using Davisson-like
universal coding.

Theorem 1: For a class of memoryless sources and suf-
ficiently large n, there exists a universal d-semifaithful
code CY such that

] 1
rn(Cg)éR(p,d)-l-(A—%) %+o (%) . (20)

Theorem 2: For a class of memoryless sources and suf-
ficiently large n, there exists a universal block code CY
with rate R such that

1\ 8 Inn
U < _ _ Y = -
pn(C, ) £ d(p, R) (A 2) 8Rd(p, R) -

+o<ln—n>. 21
n
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In the next section, we will prove Theorem 1. The-
orem 2 can be proved similarly, and hence only the
outline of the proof is given in Appendix A.

4. Proof of Theorem 1

For each n-type t, prepare a data base Y; such as

LY €TH(Q0}
(22)

where ||Q; — Q]| £ 2,8 2 0, Q} is the optimal dis-
tribution on B associated with R(¢,d), and || - || is the
Euclidean distance. We assume that A(t) determining
the size of Y; depends on ¢ via a parameter R;, which
is given later, as follows.

MO = M rRe 23

th:{)/t‘lll?yvtg,’ 7

n
IREED AN

In2 In2

For a given data base Y; and a source output X",
the recurrence time N, (Y3, X™, d) is defined as the small-
est positive integer 7 such that for d-ball B(X™,d),

Y2 € B(X",d). (24)

If any Yt’; of Y; does not satisfy (24), then we set
N, (Y, X™,d) = 0.

We use the set of Y;, say CY, as a universal code
book of block length n, i.e.,

U =Y, : te T,(A)}. (25)

If t(X") = t and N,(Y;, X",d) = i < 2 then we
encode X" as (t,7). Note that the distortion toler-
ance d can be achieved since the decoder can repro-
duce Y;? from (¢,7) and CY. In case of N,,(Y;, X", d) =
oo, we send Y € B" that satisfies d(X™,Y) =
minyn»egn d(X™, Y™).

In order to combine these two cases, we use the
following binary codeword,

O[t]xo [ty
if No(Y, X7, d) =i <2*®
(Case A), (26)
1<Y*n>/\17
otherwise (Case B),

Cc(X™) =

where [i] is the ordinary binary representation of ¢ with
X bits and (Y*) is A bits representation of Y*. In (26),
the first bit of C(X™) is used as a flag bit.

We note that A\; must satisfy?,

A1 = [nlog, Bl < nlog, B+1 27

because of Y € B™. On the other hand, Ay can be
bounded by

Ao = [log; [Tn(A)|] < (A —1)logy(n+1) +1 (28)

because we have
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T, (A) € (n+1)47! (29)

from the Type Counting Lemma[7]. Hence, for a given
z"™, the codeword length per source symbol, rn(ac",Cf{ )
(nats/source symbol), can be bounded as follows.

Rt (A—l)ln(n+1)+3ln2,

(Case A),

21n 2
InB+ 222

(Case %)

ra(z™,CY) < (30)

In order to optimize Rt and the coding rate, we
introduce a random code ensemble where Y} € Y, is
i. i. d. and uniformly distributed on T$(Q:). In this
code ensemble, we have that for 2™ € T} (),

Pr [lnNn(Yt,X”,d)
n
Fn(t7Qtad))en
Ll|1-—
( 1T (Q:)]

_FPn(t,Qy,d) nRy
g e T3 (Qt)] . (31)

> RtIXn = .’En]
Ry

Since we can easily show that
IT3(Q0)] = enH(@0= 557 Innro), (32)
(31) is further upper bounded as follows:

_Fn(t,Q¢d) nR; 1 nRy—m _
. m—e S)e_e Ry—nlIj(t,Q¢,d)— % Inn+O(1)

2) _enRt—nll(t,Q:,d)—-é— In n+0O(1)
=€

enRt—nR(t,d)—% In n+0O(1)

=e ;o (33

where 1) is derived from (11) and (14), and 2) is due
to the following fact: Since I;(-,-,-) is lower semi-
continuous in its domain[4], it satisfies that for ||Q; —

Q<8
Il(pv Qtad) = Il(p’ Q:ad) +O(||Qt - Q:H)
= L(p,Qf,d) + O (%) (34)

We note that if we use

. 11 o
R, = R, = R(t,d) + §—nnﬁ 4 lplan

+O<l), o >0, (35)
n

n

then R, satisfies from (31) and (33) that for a proper o,

pr [lnNn(Yt,X",d)
n

> Ry|X™ = :c”] < (36)

S [

This means that in the random code ensemble the prob-
ability of “Case B” is bounded by

k] is the smallest integer that is not less than k.
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Pr[Case B] < (37)

S =

Now, we consider the ensemble average of coding
rate rn(Cf{ ), which can be represented for some o > 0
as follows:

ECSTn(Cr[zJ)
= X S Pt
t:|[t—pl|>ay/Zmn T"€TX (1)
xEcyra(a",Cy)
T > > M)
t:|[t—pl|Say/Zmn T"ETE(H)
x Ecyra (2™, Cy))- (38)

In case of ™ € T%(t), we have from (30), (35), and (37)
that

Ecgrn(x”,cg)
(A= 1)In(n+1)+3In2

<R +
n
+ Pr[Case B] {lnB-+- 2ln2}
n
<R+ (A-1)In(n+1)+3In2
n

-f-l {1nB+ 2ln2}
n n
= R(t,d) + (A— 1) ln—"+o<ln—”-). (39)
2 n n

Thus, (38) is upper bounded by

Eeyra(C) S Y
t:ll6pll>ay/ZHE

+(A_1) hl_n+0(hl_n)
2 n n

Y p”(T§<t>>{R<t, d)

p"(Tx (1) {R(t, d)

t||lt—pll<ay/ Han
1\1
+(A - —) LIPS
2 n
2lnn

We first consider the case of ||t — p|| > a4/ %22 in

n

(40). In this case, the relative entropy D(¢||p) satisfies

3/2
Didlp) > 0?2 4 0 ((ln—") ) @n

(40)

n

from the Appendix B. Hence for a® > A + 1 and suffi-
ciently large n, we have
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> pNTR®)
1t —pl|> o/ TEE
IS

t:||t—p||>ay/ 2oz

[

e—nD(tlp)+0)

2) — nn— n_/ n 3/2
< (n+ 1At et im0 (w2 ™)
<

1 1
where 1) holds because for 2™ € T%(t),

p*(Tx(t) = [Tx(t)| p"(z™)
_ e—nD(th)—% In n+0O(1)

I

< e—"D(tHPH—O(l)’ (43)
and 2) is derived from (29) and (41). Since R(t,d) <
In B, we obtain that for o? > A+ 1,

) p"(T)’s(t)){R(t, d)

)|t —pl|>ay/ZE2

n

S35 ()
“(F()
fro(a-3) 0o ()

=0 (%) (44)

Substituting (44) into (40), we have

Ecyrn(Cy) < Y. PHTR@)R(L)
t:|[t—p||Lay/Fan

+(A—1>ln—n+o(m—">. (45)
2 n n

The Taylor expansion of R(¢,d) around t = p is
given by

R(t,d>=R<p,d)+<M,t—p>

ot

2
+lt=0) (522D (=) + ol -9l
(46)

where < -,- > is inner product, and ¢’ represents the
transpose of vector ¢. Substituting (46) into (45),

EC,’{ Tn(cg)
s >
t:|[t—pl[Lay/ 2or

X
tlle—pllgay/TB=

p"(Tx (1)) R(p, d)

(3 (0) (2T o)
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X

t:||t—pl|gay/ 220

n

' (%%) (t—p)’+<A—%)ll‘nﬁ
o (2
(%)

2 Y rEROREd

p"(Tx($)(t —p)

teTn(A)
OR(p,d
+ Z t)) <%7t - p>
teT,(A)

+ P lt—p)(;azi_,(t2 ))

teT,(A)

, 1) Inn Inn

where 1) holds because R(p,d), <%,t —p>, and

(t—p) (% %) (t—p)’ are at most O(1), respectively,
and (42) means

S razeom <o),
t:ljt—pl|>ay/202

We can easily show that

>z (o) -0 @

teT,(A)
Moreover, noting that for ¢ = (t1,t2,---,tq, - -,t4) and
po = Pr[X =al,a € A,
> P (TR(1)(ta — pa)ta — pa)
t€T, (A)
1 . .
_ S 2pa(1 = pa),if a = a,
B {%Pal’&, ifa 4: fl, (49)
we have
I 1 8?R(p, d)
S rasne-n (37552 ) @ oy
teT, (A)

=0 (l> . (50)
n
Hence, from (47), (48) and (50), we finally obtain

that

Inn

Ecurn(CY) < R(p,d) + (A _ %) nn

+o(ln—n). (51
n

Since, in the code ensemble, there exists at least one code
CY such that r,(CY) < Ecury(CY), we obtain (20). O
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5. Concluding Remarks

In this paper, we obtained the new upper bounds of the
redundancy in Davisson-like universal codes.

In[5], the upper bound of the rate redundancy in
Davisson-like universal d-semifaithful code is obtained
as

(AB+A+4)ln—n+O(n) (52)

Comparing this bound with (20) in Theorem 1, we
note that our bound is much tighter than (52). Actu-
ally, we can show that our upper bound is the attainable
minimum in any Davisson-like universal d-semifaithful
codes as follows.

|7.(A)| is given by

|Tn(A)]
_ (n+A—1> _ (n+A-1)
A-1 nl(A - 1)!
) V2r(n+A-1) (n+ A-1)"+A! o Atlte
(A—1)!'v2mn n"
n—Jf-2
_a+s) “(LA B 1)) (n+ A-1)A e ATHe (53)

and 1) follows from the well-
~nt0(2)

where |z| £ O(1/n),
known Stirling formula n! =
Noting

iyt
(1 + A——l) >1, (54)
n

|T,.(A)| is lower bounded by O(n?~!). On the
other hand, it is known that when source distribu-
tion is given, the lower bound of rate redundancy
is él“n" + o(22)[4]. Hence, combining these two
bounds, the rate redundancy in Davisson-like univer-
sal d-semifaithful code must be lower bounded by
(A - lylnn 4 o(I22), This equals the upper bound
obtained by Theorem 1, which means that Theorem 1
is tight in a Davisson-like universal d-semifaithful code.

Similarly, we can easily show that the upper bound
of the distortion redundancy in Theorem 2 is actually
the attainable minimum in any Davisson-like universal
fixed rate codes.

2mnn"e
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Appendix A: Rough Proof of Theorem 2

For each n-type ¢, prepare a fixed rate code C; such as

G = {Ytrltv b3r s Ying Y;? € Ty (Q:)
andM=|_e”R"\°1“2J}, (A- 1)

and a universal code CY {C; t € T.(A)}.
When t(z") = t, we select Y} from C; that minimizes

pn(X™, Y}). Then, we encode X™ as (t,5) and the de-
coder reproduces "+ € Ct. Letting Ao = [|log, [Tn(A)]]
bits, (£,j) can be represented by a fixed length code with
rate R.

In order to evaluate the average distortion of this
code, we introduce a random code ensemble where
Y/} € Cy is . i. d. and uniformly distributed on T$(Q;).

For d; that satisfies

1
nR— Xoln2 ~ nR(t,d) — %+0( )
=Inlnn?, ¢ >0, (A-2)

we can show in the same way as (36) that for a proper
g,

- 1
Pr[p,(X™,Ct) > dy|] X" = 2" £ - (A-3)
From (A-2) and (28), we obtain that
dy=d (t,R— Aoln2 _lnn (m—"»
n 2n n
gd(t,R— (A-1)ln(r+1)+In2 Inn
n 2n

-(3)
o (o (2) oo

We now evaluate the ensemble average of p,(CY).
For some o > 0,

EC,‘,{ Pn (Crlzj)

= X 2, P
t:[jt—pl|>ay/2nm 2"ETR(Y)

n)ECf{ pn(l‘n’ Ct)
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> > P
t;”t_p“éa@ :E"ET;(t)
< Z pn(T}} (t))Pmax

t:||t—p||>ay/H2n
D > P
ti|lt—pl|gay/TER 27 ETR(L)

z")Ecy pn(z",Ct)

™) Egu pa(a™, C;).

(A-5)
Using (A-3) and (A- 4), we obtain that for 2™ € T%(t),

EC,‘{ Pn (zna Ct)
< d’t + Pr{Pn(Xn Ct) > d~t|Xn = J3n}pmax

o(vmm(a-3) 5o (50))
<)

Thus (A-5) is upper bounded from (42) and (A-6) as
follows: For a? > A+1,

t:|[t—p||Lay/ 2oz
x d (t,

Inn
A—=-) 22
~(a-3) e
1
+o(_).
n

Expanding d (t,R— (A—1)=2 4o (1)) around

n

t = p in the same way as the proof of Theorem 1, we
finally obtain that

ECln’pn(Cvlzj)
o ()2 ()
(lnn)
+o| —
n

= (o, R) ~ 5 1) (4= ) 2

(A-6)

Ecvpa(Cl) < p™(TR(t))

(%))

(A7)

OR

(lnn)
+o| —|.
n

Appendix B: Derivation of (41)

,Da), relative

Fort = (tlatZ)"'atA) andp = (plap27”'

entropy D(t||p) is defined as

Zt ln—

ac€A

D(t|lp) = (A-9)

The Taylor expansion of D(t||p) at t = p is given by
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D)
8D(pl|p)
= Dol + (22 e p)

+0-0) (528 (e +O(le =5l
(A-10)

where (-, -} is inner product, and ¢’ represents the trans-
pose of vector ¢.
It is well known that

D(pllp) = 0. (A-11)
Since
aD(p|lp)
at, ( )
holds for every t,, we have
oD (p||p) _ _
<T,t“P “Z(ta_pa)—o- (A-13)
a€A
Furthermore, since we can easily show that
8 D(pl|p) 1/pa, ifa=a,
dtot; 1 0, otherwise, (A-14)
2lnn

we obtain that for ||t — p|| > a

a—m(lyD@W)

n °

1
t—p) = =||t—p|?
S 2D (¢ py 2 e

> a?B% (a15)
n

Thus, substituting (A-11), (A-13) and (A-15) into

(A-10), (41) is obtained.
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