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Decoding
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SUMMARY The performance evaluation by analysis of
systems employing Reduced State Viterbi decoding is addressed.
This type of decoding is characterized by an inherent error
propagation effect, which yields a difficulty in the error probabil-
ity analysis, and has been usually neglected in the literature. By
modifying the Full State trellis diagram, we derive for Reduced
State schemes, new transfer function bounds with the effects of
error propagation. Both the Chernoff and the tight upper bound
are applied to the transfer function in order to obtain the bit
error probability upper bound. Furthermore, and in order to get
a tighter bound for Reduced State decoding schemes with paral-
lel transitions, the pairwise probability of the two sequences
involved in an error event is upper bounded, and then the brarich
metric of a sequence taken from that bound is associated with a
truncated instead of complete Gaussian noise probability density
function. To support the analysis, particular assessment is done
for a Trellis Coded Modulation scheme.

key words: reduced state decoding, viterbi algorithm, feedback
equalization, intersymbol interference, trellis coded modulation

1. Introduction

The development of Reduced State (RS) systems
using Viterbi decoding, designed for operation in
channels affected by linear Intersymbol Interference
(ISI) and Additive White Gaussian Noise (AWGN),
is a current subject of active research.’)-*  Even
though Maximum Likelihood Sequence Estimation
(MLSE) or equivalently Full State (FS) decoding,
provides the optimum theoretical performance,®- its
practical realization may become highly complex. This
is based on the fact that an ISI channel modeled as a
finite state machine (fsm) has N, =2" states, being m
the number of input bits to the system, and u the
channel’s memory length. A coded scheme with N,=
2¥~! states (v is the code constraint length) increases
further this number resulting N = N,* N, states. N is
also the number of states of the so called super-
encoder, and of the trellis diagram for FS decoding.
On the other hand, RS schemes share an error propaga-
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tion characteristic which arises from erroneous deci-
sion feedback.® Its effect is not serious however, since
each path uses feedback decisions taken on its own
record (an example of a single feedback decision
provided for all the competing paths would be a
Decision Feedback Equalization (DFE) block placed
in front of the Viterbi decoder. V- 1In the litera-
ture, V- the performance of RS schemes has been
judged basically by simulations and somewhat coarse
theoretical approximations such as the minimum dis-
tance criterion. In a recent work, neglection of the
error propagation effect has been justified to simplify
union bound calculations by algorithmic means.®®

The main purpose of this paper, is to present an
analytical method to evaluate the performance of
Reduced State (RS) systems, including the small but
finite error propagation effect caused during Viterbi
decoding. The organization of the paper is as follows.
Section 2 introduces the system model used in the
subsequent analysis. We are concerned in particular
with Trellis Coded Modulation (TCM)“® schemes,
though the analysis is quite general. We derive error
probability transfer function bounds for RS schemes
incorporating the error propagation effect and give a
simple example in Sect. 3. Section 4 deals with the
attainment of tighter bounds for systems with parallel
transitions in the decoder trellis. To support the
analysis, simulation and theoretical results are shown
in Sect. 5. Finally, we summarize our conclusions in
Sect. 6.

2. System Model

The system model block diagram is shown in

Nen-STATE 1SI CHANNEL
m N, -STATE MAPPER
—{CONVOLUTIONAL t)
input] " ENCODER t)
m | N-STATE RS SOFT DECISION z
<«—  VITERBI DECODER WITH  |a— GI‘;‘”SS]AN
OMPUL]  FEEDBACK EQUALIZATION OISE

Fig. 1 System model.
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may be partially omitted for RS decoding
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Fig. 2 General super-encoder.

Fig. 1. As seen, m input bits are, upon codification,
mapped by F(-) into a channel symbol s,, which
forms a received sample vector z, with u preceding
symbols embodied in the ISI channel output vector #,,
and the Gaussian noise vector 7, (the subindex »n
stands for time instant). The ISI weights are denoted
by fo, fi, ***, fu- Uncoded schemes and coded systems
with. mappers having non-redundant or redundant
symbol alphabets (the latter case corresponds to
TCM) may be viewed as particular cases. Now, for the
special case of TCM, the N.-state convolutional
encoder with mapper F (), and the Ng,-state channel
of Fig. | are combined resulting the N = N, N.,-state
super-encoder with modified mapper Fs(+) (which
outputs symbol vectors #, corrupted by ISI) of Fig. 2.
A FS trellis state will be given by an= (0n;142), where
o» and p, denote the encoder and the channel states,
respectively. Thus,

On= (Tn, Tn-1, **", Tn-u#z) (1)
tn= (ITn—1;ITn—2; ;1) (2
I r= (ﬂ;(zljk, 7[7(12‘)12, ty ™) k=1,2,-,u (3)

Then, for a RS trellis state, we set a super-encoder state
as @n=(0n;fn) such that

ﬂnz (ﬁn—l;ﬁnvﬁ”';ﬁnfu) (4)
ﬁnsz (ﬂr(zl—)h, 71';(12—)/4, ) k=1,2,-,u
(5)

The parameter m; (0= m, = m), determines the channel
states reduction extent. While m,=0 means complete
disregard of a channel state, m,=m indicates complete
knowledge of it. Partial knowledge of the same is
given then by 1=m,<m—1. Thus, (m=my=---=
my,=m) for FS decoding, and (my=mp=+=my=m;
My =My a="-=my=0) for a RS scheme equipped
with up to u’ preceding symbols. Also, in order to
follow the track of past channel states (i.e., to preserve
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successive channel states information), (m=m ==
m,=0). Accordingly, the number of states of the RS
decoder, denoted N’ becomes

N'=N,* Nt (6)
=28 @

where N7, represents the number of channel reduced
states. Evidently, N’ may vary from N, to N.2® By
the way, it can be observed that in the RS scheme of
Fig.2, w=m—1 (if m=0), or w=m—m (if m=1)
bits will remain uncoded. In other words, the RS
decoder trellis will have parallel transitions equal in
number to 2%.

Besides, consider the alphabet F of the original
mapper F(-) with cardinality |%|=2""". Then, the
FS super-encoder mapper denoted Fs(-), with alpha-
bet F s of symbols corrupted by ISI will have a size
given by |Fil=|F||F|*=|F|-2""V"=|F| Nex-2"
the same which, by reduction of the channel states Nea,
is as well diminished such that the cardinality of the
RS super-encoder mapper, denoted F{(-), becomes
|F4d=|F| Ne+2“ Thus, by denoting with p the
number of non represented states per each state in the
RS trellis, we get p=N/N’=Ng./ N, which in turn
equals the number of non represented symbols, per
each symbol in the RS trellis, since | F s|/|Fs|=Nen/

en=p. These p symbols are to be estimated by the
RS decoder as we will see next.

3. Transfer Function Bounds
3.1 Error Probability Analysis

Consider first the path metric recursively comput-
ed by the RS decoder

M (an) = min {Mn-i(an-1) +18al") ®)

n-11=>an

where the minimization is done according to the
Viterbi algorithm over all the transitions defined
between a, a particular arriving state in the RS trellis,
and its predecessors set {@n—1}. Also, |34 is a squared
distance branch metric, and the vector S is expressed
by

Bn:Zn—:Z:,O‘ﬁzsn—k—k=é+lﬂ§n—k(a'n—l) 9)

wherein the last two terms arise from ISI. Since the
decoder is assumed to have channel state knowledge
for u’ preceding symbols, the last term corresponds to
estimations, with estimated symbol at time n—1,
Sn-r(a@n-1). For an L-length error event starting at
time »=0 and ending at time n=L, and defined by the
transmitted and decoded sequences S; and S, respec-
tively, the path leading to the starting state ao will have
symbol estimations, which may agree or not with the
past transmitted symbols. Since the estimated symbols
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are fed back for compensation of the unknown ones
(operation called feedback equalization), the second
possibility will affect following decisions producing
what is meant by error propagation effect (when
perfect agreement results, the error event would arise
from the Gaussian ISI channel disturbances).

An error event will occur when the path metric of
the correct path results larger than that of the incorrect
path, which is expressed as

Pr[My (ar) > Mi (@) 1=Pr | 3 (18,18 >0]

(10)

We have just seen how successive branch metrics |4,
become dependent due to the feedback mechanism.
This fact disables the attainment of transfer function
bounds from the RS state transition diagram. In what
follows, we overcome this difficulty and make the
branch metrics independent by using the FS trellis
diagram.

So far, we have seen that only some interfering
symbols are included as labels of the RS trellis dia-
gram, which is related to the fact that the RS decoder
possess only partial information about the channel
states. As well, it is known that in the FS trellis
diagram, all the interfering symbols are included in the
branch labels, which follows from the total channel
state knowledge available to the FS decoder. Also, as
we have seen in the previous section, there are p
symbols, per each symbol represented in the RS trellis,
to be estimated by the RS decoder. Therefore, there are
p potential survivors that can influence the decision of
the second and higher order error events.

Then, the fact that the number of possible survi-
vors is the same than the unknown states, suggests that,
in order to make them explicit, each one of the N’
reduced states can be combined with each of the p
unknown states. As a result, we obtain the N-state FS
trellis diagram (Nj=N), where each resultant transi-
tion contains in its symbol label one of the p unknown
past symbols, whereas each resultant state contains one
of the p unknown past states. The meaning difference

IZ
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between these labels and states, and those of the FS
decoding case (in numbers they are identical), is that
the formers represent feedback estimations, while the
latters represent deterministic quantities. Like this, the
utilization of the FS irellis (with yet some
modifications), where branch metris are independent,
will permit the derivation of transfer function bounds
based on an N-state transition diagram. It also follows
that the computational complexity will be the same for
any N’-state RS scheme, since in any case we arrive to
the N-state FS trellis.

We consider now the ocurrence of multiple error
events as shown in Fig. 3, where the RS decoder cannot
recognize the difference among the states s, si, **+, Sp-1,
resultant from splitting of the RS states. Then, we
express the error event probability as follows

P<IIT S Pc[SK.L]gPK[Si]

K=1L=1Sk,LS5k.L

p—1
';P[SK,L—) S;{,L/Si_"Sj] (11)

where the correct sequence is denoted by Sk,. and its
occurence probability by Pc[Sk,.]. The error events
are classified by K, as first error event (K=1), second
error event (K=2), and M-th error event (K=M).
The length of each error event is represented by L.
Also, Pg[s;] is the K-th error event starting state
probability for s;, and P[Sk,. — Sk, /s:— s;] is the
pairwise error probability for the incorrect path Sk,.
starting from s; and ending at s; when such path exists,
otherwise it is assumed to be zero. Then, if s is
assummed to be the transmitted state, the first error
event will start from it at any time. Since at that
moment there is no error event already in progress,
P[s]=1 and P[s;]=0 (i=1,2, -, p—1). It follows
then that the first error event term (K =1) in Eq. (11)
will carry no error propagation effect, simply because
the path leading to % is the transmitted one. On the
other hand, for K =2, the error events may start from
any state s; but from s, since at that time at least one
error event have already happened (i.e. Px[s]=0 for
K =2). Tt should be apparent that all the error event

S [ ———— o N
$1 5
'
1

0
1

p-1

So
S.l - - -

1
L]
Ve S
N v , N v ,
K=1 K=2
single error event

double error event

multiple error event

Fig. 3 Multiple error events.
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terms from the second (K =2) in Eq. (11)) will con-
tain the error propagation effect. Furthermore, all
error events will end at any s, (i=1, 2, -, p—1), where
the exception made for s is based on the general
characteristic at the time of RS decision, where the
transmitted state is not fully coincident with the
decoded state (contrary to what happens in FS decod-
ing). Then, we rewrite Py as

Pe< DI PLSus]

L=151.51L

-1
. §1P[SI'L i SE,L/SO—’ Sj] (= (Kzl)

p-1 )
+ Z Pz[Sz'] > 2 EPC[SZ,L]
i=1 L=1S2,5%1

p-1
. ZP[SZ,L — Sé,L/Si — Sj] — (KZZ)

J=1

.
)

NI (12)

Before proceeding with the evaluation of Eq. (12), it is
pertinent to note that induced by the ISI channel, the
super-encoder of Fig. 2 has become non-uniform such
that the all-zero transmitted sequence assumption®? is
no more valid. For this reason, we resort to the error
weight matrix transfer function method,#213 which is
suitable for non-uniform schemes or sequence depen-
dent error probability channels, and that deals with
N X N matrix labels of the N-state transition diagram
seen before. We prefer this method to the also general
pairwise-state technique,*¥ since the latter involves
N?%X N? matrices.

Now, we define two transfer functions 7, (z) and
T,(z) in a matrix form, where z is a parameter result-
ing from the Chernoff bound to be described in the
next subsection. 7,(z) represents the transfer function
of the first error event starting from s and ending at s;
(j=1,2,+, p—1), while Ty,(z) corresponds to the
error events starting from s; and ending at s; (i, j=1, 2,
-, p—1). As shown in Ref. (13), each element (i, j)
of the transfer function matrix is an error event proba-
bility upper bound associated to the paths between s;
and s;, which in our case may be zero if S%,, does not
satisfy the condition s; — s;. Both T,(z) and T, (z) are
calculated by first obtaining the matrix labels G (e,) of
the N-state transition diagram correspondent to the
N-state FS trellis, where e, denotes an error codeword
of the super-encoder. An element of G (e,) associated
to a particular transition between states p and q is
given by
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[G (en) Jp.a=—5 Elexp 23,] (13)

where m is the number of input bits to the system, and
E[-] denotes statistical expectation taken of the param-
eter A multiplied by &§,, which (we’ll say for the
moment) is related to the branch metrics. We observe
that in Eq. (13), there’s no summation taking account
of parallel transitions, since in the FS trellis, upon the
splitting of the RS trellis states, all transitions become
singular. Also, we note that the following expression
holds for the starting state probabilities

P[s:] =:21PK—1[Sk] i

L=1Sk-1,.5%~1.L
“P[Sk-1,.— Sk-1,./5. — 5i]
Kz2 (14)

such that for the K-th error event, the starting proba-
bility for the state s; is given by adding the pairwise
error probability of all the paths leading to it (for K
=1 it was stated before that P,[s]=1, and P,[s;]=0 for
i=1,2,++, p—1). Then, we define new transfer func-
tion matrices 7;(z) and T;(z) with elements (i,j)
containing the pairwise error (rather than the error
event) probability upper bound for the paths starting
at §5; and ending at s;. In this case, the elements of
G (e,) will be given by

[G (en)1p.o=Elexp 164] (15)

where the factor 1/2™ is dropped since in Eq. (14) the
probability of the correct sequence given by P.[ Sk,.]=
(1/2™)* needs not to be included. Using these defined
transfer function matrices, we rewrite the error event
probability as

1
N

where T (z) denotes the total transfer function matrix,
1is a N-dimensional row vector all of whose elements
are 1, and 17 denotes its transpose. It follows that
T (z) is given as

T(z)=T,(z) = (K=1)
+T;(z) T (z) &= (K=2)
o
+ T (2) Y2 (2) Tr(2) & (K=M)
. (17)
T(2)=T.(2)+ T;()[I—T5(2)| ' T (z) (18)

where I denotes the N X N identity matrix. An illus-
trative example of the defined transfer function
matrices will be given in Sect. 3.3.

Now, in order to obtain the bit error probability
upper bound, we extend 7,(z) and T,(z) to include
the number ¢ of incorrect input bits. The extended

Pp<

1:T(z)-17 (16)
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K-1-th error event —H—K~th error event —»

—

T, @Ty 2  Teb

Fig. 4 Starting state probability.

transfer functions are denoted 7,(z,I) and T,(z, I),
where I is an indeterminate whose exponent is e.
Then, the total transfer function is extended to T (z, I).
Using the fact that the pairwise error probability is
multiplied by the number of incorrect input bits in
1-T(z,1)-1"/3I|;-;, and from Egs. (16) and (18),
we get

1 91:T(z,1)-17|

Po< mN ol l1=1 (19)

where
T(z,)=Ta(z, D+ T;(2)[I - T (2) ] ' Tp (2, T)
(20)

Figure 4 shows the K-th error event (K =2), whose
starting state probability is given by T;(z) T5¥%(z).
For convenience, the bound of Eq. (19) will be called
the Union Bound (UB).

3.2 Chernoff Bound

We will see now how the elements [G (e,) ].q of
the matrix labels needed for the computation of the
transfer function matrices T,(z), T,(z), T;(z) and
T;(z) given by Egs. (13) and (15) respectively, are
derived. We make

L
P[SK,L b S,K,L/S,'_’ Sj]:PI' [§18n>0] (2])

On=|Bnl*—|8f* (22)

where |G.|? and |B;|? are the squared distance branch
metrics of Sk,. and S’%,. respectively, as shown in Eq.
(10). Then, with y, and 7, representing the correct
and incorrect signal vectors (associated to the FS
trellis transition labels) respectively, and with 7, as the
noise vector, we rewrite J, as

Sn=|nal*—|yn+ na— il (23)
==2(ya=7a) ma—yn—7il’ (24)
= ayXn+ bpYn+ca (25)

where
an=—2(ren—"Fin) (26)
bn=—2(ryn—r4) (27)
en=—lyn—ril* (28)
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In turn (Xxn, yn), (#xn, ) and (#um, #5e) are the coordi-
nates of the vectors z,, ¥, and 77, respectively. Then,
by applying the Chernoff bound to Eq. (21), we get

P[SK,L - S;(,L/Sz' - Sj]

=P[nZ:]16n >0] (29)
< E[exp Aélan]=£IlE[exp A6n] (30)

and

E[exp /18n]=[:[:e"‘“x+by+”)pc(x, y) dxdy
(31)

where A is the Chernoff parameter to be optimized, and
pc(x,y) represents the Gaussian noise probability
density function (pdf). Equation (30) holds for
memoryless channels in general, while Eq. (31) con-
siders the particular case of Gaussian memoryless
channel or Gaussian ISI channel rendered as ISI-free

owing to the super-encoder configuration. After
simplification (dropping the time subindex )
E[exp /15”] — eA(arx+bry+c)e izz—(a2+b2)o‘2 (32)

where ¢” denotes the noise power. Optimization of Eq.
(32) over A gives

dE[exp ASa] _
1
A_TO‘Z (34)

Then, by replacing the optimum value of A in Eq. (32)
we obtain

E[exp A0.]= e~ FoTIm—THI% — jldni? (35)

where d, is the branch distance vector between y, and
yn (shown later in Fig.7) and z=e "®%*, Finally,
upon the obtention of all the matrix labels G (e,), the
transfer function can be computed. In this paper, we
have calculated T (z,I) following Ref. (15), by a
series expansion approach.

3.3 Example

We wish now to illustrate the transfer function
bounds by a simple example. We consider the case
where m=1, y=2 and u=1 in Fig. 2, for an RS
scheme with m =0, ¥’=0. The resultant N =4-state
super-encoder, N'=2-state RS and N =4-state FS trel-
lises are shown in Figs. 5(a), (b) and (c) respectively,
and the FS state diagram in Fig. 5(d). The RS Viterbi
decoder will estimate then, p=4/2=2 symbols (or
states) per each symbol (or state) represented in the
RS trellis. The parameters denoted 7, and m, reveal
one of two states of a binary encoder and of an ISI
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ENCODER CHANNEL
STATE  STATE

Tn T

(a)Super-encoder

Tn
0

x>

(b)RS trellis

RS FS
i DECISION DECISION
nTn
00

10

11 [ERROR PROPAGATION ]
(c)FS trellis
é 11 Q
é 00 g 10 & 01 & 00
[ & >®

(d)State transition diagram

Fig. 5 RS decoding error event (example).

channel, respectively. While in the trellis for FS
decoding the combination of encoder and channel
states produce the set denoted {r.7.:00(&w), 01 (&o1),
10(&w0), 11(&1)}, in the FS trellis intended for RS
transfer function bounds calculation, the same set is
obtained but from the combination of 7, and the
estimated channel states denoted 7,. In Figs. 5(b) and
(¢c), an example of an RS first error event is highlighted
by thick lines. Then

+ Since the RS Viterbi decoder possess no informa-
tion about the ISI states (Fig. 5(b)), it can be said
that at the time of RS decision (Fig.5(c)), the
states 00 and 01, on one side, and, the states 10 and
11 on the other, will be seen the same from the RS
decoder point of view. With the aim of error event
probability analysis and computation, we con-
sider all the combinations arising from the known
states and channel state estimations, thus becom-
ing necessary a 4-state transition diagram.

+ In Fig. 5(c), with the assumption that the upper
sequence following the 00 states route is the cor-
rect, once the incorrect sequence reaches 01, for the
RS decoder the error event is considered to be
ended. In such case, the ISI state may become
correct with the transition leading to 00 (meaning
that no error event happens next), otherwise error
propagation will repeatedly occur by the transi-
tion leading to 10.
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Tlegrt,)

Tz 1Ege,) T(zllegre,,)

T@Ileg=¢,)
(b)

Fig. 6 RS transfer function (example).

+ At the time of RS decision, the transmitted state 00

is not fully coincident with the decoded state 01

which is in contrast with the total coincidence at

the time of FS decision. Here, the RS decisions
are taken prematurely if compared with FS decod-
ing. In general however, an error event length in
the RS trellis may be shorter or equal to that of the

FS trellis, depending on the particular RS

scheme’s complexity.

With the above characterization, the RS Viterbi
decoding transfer function can be obtained as follows.
First, by considering &, in Fig.5(d) a terminating
state, we have a state transition diagram as shown in
Fig. 6(a). Then, since the RS decoder ignores the
channel states, for an error event diverging at &g, a
decision will be made when it passes for the first time
by &n1. Now, this error event probability multiplied by
the number of input error bits along the associated
path, gives the bit error probability. However, the
dotted line transition going from &, to &, can be
thought as a new error event starting from the just
ended one. This new error event will proceed with
pairwise error probability already attained up to &u,
while a new count of input error bits is started, thus
passing once more by &. Like this, new error events
end and start again indefinitely.

Now, let T(z, 1/&o— &o) and T (z/&wo— En)
denote the first error event transfer function matrices
correspondent to 7T,(z,I) and T,;(z) in Eq. (11)
respectively. Let also T (z, I/&n— £n) and T’ (z/€n
— £o1) represent the transfer function matrices corre-
spondent to 7»(z, I) and Ty (z) in Eq. (11) respective-
ly. Thus, the total transfer function matrix can be
written as follows

T(z, =Tz, 1/500—’ Em)‘f‘T'(Z/Eoo—* Eor)
(I-T(z/€1— E)]!
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-T(z, 1/501—’ 501) (36)

which is shown in an equivalent state transition dia-
gram in Fig. 6(b).

4. Tighter Bounds

When Viterbi decoding takes place in a trellis
with parallel transitions, a decoded branch symbol is,
among the members of the parallel transition, the
nearest in Euclidean distance to the received signal z,.
This feature is not exclusive of TCM systems, since also
uncoded schemes with RS decoding based on set
partitioning principles may have parallel transition
trellises. > Conventional coded schemes (for instance,
convolutionally encoded Binary PSK), can be decoded
also in a similar fashion. Then, even though the usual
pairwise error probability of Eq. (10), based on the
path metric condition,

P[Sk,.— Sk.i/si — s1=Pr [My(ar) > M{(ar)]
(37)

holds equally for decoding on trellises with or without
parallel transitions, in the former case and from the
above argument we can write

P[SK,L I S/K,L/Si - Sj]
=Pr [ML(QL) >M1:(aL) and
M;(an) <My (an), n=1,2,+, L] (38)

where the condition M;(a,) <M, (a,) expresses the
fact that a branch which forms part of the decoded
sequence Sk, possess the smallest metric M, (ay)
among the members of the parallel transition. Like
this, we make explicit the two conditions satisfied by a
sequence decoded in such a trellis. In turn, M, (a.)
denotes the branch metric associated to any other
sequence diverging from the decoded S%,;, called S%..
hereafter, resultant from parallel transitions concatena-
tion. Define now the set E/ of k, error patterns
defining all the sequences Sk, given by E/={FE, (1),
Er(2),-, E (k.)}. Thus, we obtain, by union of the
above patterns, the following upper bound

P[Sk,L— Sk.i/s:— s5]
kL
<l_=z}1P[SK,L — Sk,i/se— s|E(1)] (39)
with
P[SK,L - S;{,L/Sz' i sj'EL(l)]
=Pr [M.(a.|E. (1)) >M{(a.|E.(I)) and
M (an| EL(D)) <My (an| EL (D)),
n=1,2 - L] (40)

In distance metric terms,

s et i b —— — —

(Ve %y )

|
I
|
|
origin (w=2)

2%¥=4 decision regions

| : symbol assigned to a parallel transition

Fig. 7 Parallel transitions decision space.

P[SK,L g S.’x,L/Sz'_’ Sj|EL(1)]

=Pr [,,2:71<Iﬂn|2—|3;|2) >0 and

J
2 18184 <0,7=1,2,+, L] (4)
wherein |87]? is the branch metric for the S%.
sequences. The received signal vector z, will lie then,
in one of the decision regions defined by the 2% paral-
lel transitions, depending on the noise vector 7.
Figure 7 illustrates such a situation when the uncoded
number of bits in the RS scheme is w=2. As shown,
the received signal z, lies nearest to one of the four
symbols assigned to the parallel transitions. Therefore,
the branch metric of Eq. (41) can be obtained only
from the involved decision region, or by considering a
truncated instead of complete Gaussian noise pdf. We
apply the Chernoff bound for the particular case of
Fig. 7, since in general the expectation integral limits
will depend on how the decision space is divided,
according to the number of parallel transitions of the
particular RS decoding trellis. Then

Efexp as)= [ _ [ ~e e -op; (x, y) dxdy

_ [ Max+by+c)
y1 Jxi Pe (X’ y> dXdy
(42)

where pr(x, y) represents the truncated Gaussian noise
pdf. After simplification, we obtain

E[exp Ad,]= e @x+orstor, ar+p2)02
Qlax(D)]-Q[A (D] if K> e, 5> my
Ol (N ]- A= 0l (D)) if K>ve, K< wy
1= Q[hx (D)D) - 1= QLA (D] if ri< e, <y
1= QA (DD - Q[ A (D] if r<va, K>y
(43)
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where Ay ()= (vx—rx/0) —Aao, hy(A)=(vy—ry/0)
—Abo, and (v, v,) denotes the truncation point (see
Fig. 7) (each case corresponds to a decision region).
QO[] stands for the @ function given by Q(x)=

]

(1/\/27r)f e *"dt. Concerning the Chernoff param-
X

eter A, in this case it cannot be obtained an optimum
value independent of time, as that for the complete pdf
case given by Eq. (34). Therefore, upon the calcula-
tion of the bit error probability upper bound as a
function of A, numerical optimization of the same will
be necessary. The tighter bound that arises from an
element taken from the union bound at the RHS in Eq.
(39), will be called the Elementary Bound (EB), to
distinguish it from the UB given by Eq. (19). Then,
the EB becomes

1 81-T(z,D)-17|
Posmin N ol

In this case, due to the pdf truncation z’'=e =249 (7
reduces to z of Eq. (35) when A=1/4¢%).

For the cases where the Chernoff bound is not
satisfactory enough, yet another approach, by
moments, could prove useful. A moment bound is

(44)
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optimum in the sense that from the moment informa-
tion of the r.v. (§ in this case), it cannot be further
tightened."® In Ref. (17) we derive such moment
bound and discuss an algorithmic approach for
computing the bit error probability Ps.

5. Results

The simulation and theoretical performance in
terms of bit error probability P, vs. bit energy to noise
ratio E,/Ny(No=20¢? denotes one sided noise power
spectral density) of the N,=4-state 16-QAM TCM
scheme in a #=1-symbol ISI channel are shown below.
With m=3 and m =0, the RS decoder trellis has N'=
N,=4 states with 2°°'=4 parallel transitions. The
associated FS trellis has N =4-8=32 states. In Fig. 8
we show the different bounds obtained by Chernoff.
The elementary bound (EB) coming from the truncat-
ed pdf, is shown tighter than the union bound (UB)
which is derived from the complete pdf. Its tightness
however, will depend in general on the number of
elements which conform the union bound. On the
other hand, the tight upper bound (TUB)®® shows
even tighter, but it is attainable only for the complete
pdf Gaussian noise model or UB. All the bounds
include the effect of error propagation (EP) unless
otherwise indicated. It is noted that whereas the EP
effect is noticeable in the low E,/N, region, since error
events occur more frequently for higher noise levels, in
the case of moderate and high E,/N, ratios, the bound
is dominated by the Gaussian ISI channel impair-
ments.

In Fig. 9 the moments bound (MB) correspondent
to the (EB) is given up to 7 dB, since roundoff errors
prevent the computation for higher E,/N, ratios. The
trellis (based on pair states) employed in the algorith-
mic calculation has N2=1024 states.'” In all the cases,
12 moments were considered and moments convolu-
tion was performed 7 times. It is hopeful that by
increasing the number of moments, a tighter bound
might be obtained, but for the present scheme, we
haven’t go further due to excessive computing time.

6. Conclusions

We have presented a novel theoretical analysis for
RS schemes employing Viterbi decoding. New error
probability transfer function bounds have been derived
for RS schemes by employing the FS trellis diagram,
while this has served as a way to include the error
propagation effect. Also, a tighter bound has been
obtained for RS decoding schemes having parallel
transitions. Such bound is not only applicable to
TCM, but in general to any RS scheme based on set
partitioning principles. Computationally, the
Chernoff bound and the so called tight upper bound
(TUB) have been applied with the transfer function, to
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obtain the ultimate bound of interest, the bit error
probability upper bound.
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