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A New Class of the Universal Representation for

the Positive Integers

Takashi AMEMIYAT*, Nonmember and Hirosuke YAMAMOTO?, Member

SUMMARY A new class of the universal representation for
the positive integers is proposed. The positive integers are
divided ‘into infinite groups, and each positive integer n is
represented by a pair of integers (p, ¢), which means that » is the
g-th number in the p-th group. It is shown that.the new class
includes the message length strategy as a special case, and the
asymptotically optimal representation can easily be realized.
Furthermore, a new asymptotically and practically efficient repre-
sentation scheme is proposed, which preserves the numerical,
lexicographical, and length orders.
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1. Introduction

Elias® treated the coding problem of the positive
integers that satisfy

- P(n)=P(n+1), for any nE N, (1

where P(n) is a probability distribution on the set of
the positive integers A/’ 2{1, 2, 3,---}. Such codes can be
used in various universal data compression
algorithms.*»® He introduced the notions of univer-
sality and asymptotic optimality to evaluate the perfor-
mance of such codes. Let L,(n) be codeword-length

of n under a representation scheme @. Then the
average codeword length is given by
E[Le(n)]= 2 P(n)Le(n). 2)

A representation « is called universal if there
exists a constant p,, independent of P(n), such that

E[L.(n)]
Wé Oa, (3)

where H (P) is the entropy of P(n). « is called
asymptotically optimal if the ratio of the left side of
Eq.(3) tends to 1 asymptotically as follows.

E[er ( n) ]

where R(x) is a function such that R(x)—1 as x—co.

Manuscript received April 21, 1992.

T The authors are with the Faculty of Electro-
Communications, University of Electro-Communications,
Chofu-shi, 182 Japan.

* Presently, with the Software Department, NEC Corpo-
ration, Abiko-shi, 270-11 Japan.

~ Furthermore, Wang!"® introduced an intermediate
notion between the universality and the asymptotic
optimality for the case in which a representation has a
parameter. Let a(¢) be a representation with parame-
ter . Then, a family of representations a(¢) is called
almost asymptotically optimal if there exists a function
R;(x) with parameter ¢ such that

el <R (P), *

where

lim lim R, (x) =1.

=00 X—co

Although many universal representations of the
positive integers have been proposed, they can be
divided into two classes, the message length
strategy®=® and the flag strategy.®®-0®* In this paper,
we propose another new class called grouping strategy.

In the grouping: strategy, the positive integers are
divided into countable infinite groups, and each posi-
tive integer » is represented by a pair of positive
integers (p, ), which means that 7 is the g-th number
in the p-th group. We will show that the grouping
strategy coincides with the message length strategy if
the positive integers are grouped by every 2" integers,
/=1, 2,---. Hence the grouping strategy is a wide class
of the representation of the positive integers that
includes the message length strategy as a special case.

The details of the grouping strategy are explained
in Sect.2. In Sect. 3, we will discuss the asymptotic
performance of the grouping strategy and will show
that an almost asymptotically optimal representation
and an asymptotically optimal representation can eas-
ily be obtained from the grouping strategy. In Sect. 4,
a new almost asymptotically optimal representation is
proposed, which is almost as efficient as the best of
known flag strategy schemes for large initial segments
of the positive integers and satisfies the numerical,
lexicographic, and length orders preserving properties.

We use the following notation for simplicity in
this paper.

| x]:

[x]:

The largest integer not greater than x.
The smallest integer not less than x.

* The comparison of these two strategies can be found in
Ref.(18).
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B,(n): The codeword of n under the represen-

tation a. : : R

B,(n|N): The codeword of n urider the represen-
tation @ in the case that the maximum

number of n, say NV, is given.

L.(n): The codeword length of » under the
representation ¢, i.e. the length of B,
(n).

[7]-: The binary representation of n derived

by deleting the most significant bit of

the conventional binary representation.
[n]p: The conventional binary representation

of n with p bits.

Ex. [5]-= 01, [4]-= 00, [20]-= 0100,

[5]:=0101, [2]5=00010.

2. Grouping Strategy

We first briefly review the message length strategy
to clarify the relation between the message strategy and
the grouping strategy.

In the message length strategy, the codeword
B, (n) consists of two parts, Suffix [n]- and Prefix
B, (+), which represent the value of #n and the length of
the suffix, respectively, as follows.

Bn(n)=Ba([logn |+ 1) [n]-, (6)
Prefix Suffix

where ¢ is an arbitrary representation of the positive
integers.! [n]- is used in the suffix part instead of n
because the most significant bit of the conventional
binary representation is always one and unnecessary.
The prefix part is required because [ n]- does not satisfy
the prefix condition.

By devising the representation @ for the prefix
part, we can construct many representation schemes of
the positive integers. For instance, if the unary code
By (n) (which we call U scheme) is used in the prefix
part, we obtain the Single Prefix scheme (SP

scheme) ;®
Bsp(n) =By (| logen |[+1)[n]-, (7
By (n)=0""'1 or 1710, : (8)

where 0! and 177! mean the strings of n— 1 zeros and
n—1 ones, respectively. If the SP scheme is used in the
prefix part of Eq.(6), we obtain the Double Prefix
scheme (DP scheme),®

Bpp (n) = Bsp ( L logsn J+ D [”]—
=By (| logs(logen+1) |+ 1)[| logzn |
+1]-[n]-.

Furthermore, by defining the prefix part of Eq.(6)
recursively, several recursive representation schemes
can be obtained.®-™ ‘

We now propose the grouping strategy. Let p&
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N, and let S (p) be a function of p. We first divide the
positive .integers into countable infinite groups such
that the p-th group contains S (p) positive integers.
Let T (p) be : ’ : ‘

T(p) =2 S(). ©)

v Then, the first group is {1,---, T (1)}, the second group

is {T(1)+1,--+, T(2)}, and the p-th group is {T (p—1)
+1,, T(p)}.

- We note that if n&{T (p—1)+1,--, T(p)}, then
n can be represented by the group number p and its
numerical order g in the p-th group, which satisfy

T(p—1)<n<T(p), (10)
q=n—T(p—1). ‘ v 1

Since the maximum of g is S (p), n can be represented
by

By (n)=Ba(p) Bs(q|S(p)), (12)

where @ and /4 are arbitrary representations for the
positive integers.

As an example, let us consider the case of S (p) =
2°7" and B,(q]2*"") =[q—1]g.sn=[g—1]p-1. Since
T (p) =27—1 in this case, p and q are given from Egs.
(10), (11) as follows

p=] log:(n+1)]=| logen |+1,
g=n—2""141=pn—Aoenl 41,

We note from these relations that [¢—1],-; coincides
with [#]-. Hence, in this case, Eq.(12) becomes

B, (n)=B,(|logen |+1)[n]-, (13)

which agrees with Eq.(6), i.e. the representation of the

message length strategy. Therefore, the message length

strategy can be considered as a special case of the
grouping strategy.
We can easily prove that By(n) defined by Eq.

(12) satisfies the following properties.

Properties

1. If B,(p) and B(q|S(p)) in Eq.(12) preserve the
lexicographic order for p and g, respectively, then
B, (n) preserves the lexicographic order for n, i.e.
B, (n) precedes B,(n’) lexicographically for any »
<n'

2. If B(q|S(p)) is a fixed length code and B,(p)
preserves the length order for p, then B,(n) pre-
serves the length order for n, i.e. Ly(n) <Ly (n’) for
any n<n’.

3. If B(q|S(p))=[n]- and B,(p) preserves the
numerical order for p, then Bg(n) preserves the
numerical order for n, i.e. By(n) is smaller ‘than
By (n’) for any n<n’ when they are considered as

T Since @ is assumed to be a representation of the posi-
tive integers and the length of [1]_ is zero, one is added to
the suffix length | logz7 | in the prefix. ;
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usual binary numbers.
Hence; by ‘devising B.(p) and Bs(q|S(p)), we can
easily construct' a scheme that preserves the lexico-
graphic, numerical, and/or length orders. - Since the
prefix' code preserving the lexicographic order can be
used as a seatch code for the infinite set 4, we can
construct a universally efficient search code for the case
such that the séarch of n& / occurs with the probabll-'
ity satisfylng Eq.(1). ~ °

“+ Tt is worth noticing that Willems®® treated a
similar representation schemé to the grouping strategy.
But he considered only a finite set of the positive
integers {1, 2, 3,---, 2*—1}. In his scheme, say Bw (n|2*
=1), if 2*7'=n<2P—1 (p=1,2,--,L) and gq=n
—2P=14 1 then n is encoded as

By (nlzl_ 1) :[P; l]ﬂogﬂ[q_ I]P—l
- =[p— 1l n]-.

In other words; he considered only fixed-length codes"

[p—1ligr and [g—1],-, as the prefix B.(p) and the
suffix. Bs(g|S (p)), respectively, which causes that his
scheme cannot be applied for the countable infinite set
of the positive integers. Compared with Willems’
scheme, the prefix and the suffix parts, B,(p) and B, (g
|S(p)); are generalized to arbitrary representations of
the positive integers in the grouping strategy.

3. Asymptotic Performance of the Grouping Strat-
egy

In this section, we consider the asymptotic perfor-
mance of the grouping strategy. The performance is
determined by S (p), B.(p), and Bs(q|S (p)). How-
ever, since the asymptotic performance closely depends
on S(p), we investigate the dependency. To simplify
the discussion, we- consider the case that B,(p) and
Bs(q|S(p)) are the unary code By(p) and the fixed-
length code [ g — 150 Tespectively. In this case, the
grouping strategy is represented by

By (n) =By (p)[q—ozso, (14)
and the codeword length L, (n) is given by
Lo (n) =p+ logS (p)) ' (15)

Before going into details, we first introduce the
following basic lemmas concerning the universality
and the asymptotic optimality.

Lemma 1: (Ref (12, Lemma 1))

1. If, for all n, L,(n)Zn?, for some constant ¢>0,
then the representation ¢ is not universal.

2. If, for all n, L,(n) £ K,+ Kslogzn, for some con-
stants K; and K,=1, thén the representatlon a is
universal.

3. If, for all n, L, (n) 2 K1+ Kslogan, for some con-
stants K, and K,>1, then the representation ¢ is not
asymptotically optimal. -
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The second part of Lemma 1 can easily be
extended as follows.
Lemma 2: Let @(2) be a representation with parame-
ter ¢. If, for all n and all ¢, Ley(n) < Ky (t) + K2 (¢)
logsn, for some fixed functions K (¢) and K,(z), where
lim K;(t) =1, then the representation «(¢) is universal

and the family of @(z) is almost asymptotically Optl-

mal.

Lemma 3: If, for all n, L,(n) <log,n+f (logzn), for

some monotonically increasing concave positive func-

tion f (x) such that lim(f (x)/x) =0, then the repre-
X-o0 : -

sentation @ is asymptotically optimal.

We consider the performance in the cases that
S(p) is constant, linear, exponential, or super
exponential function of p, which we call C (a), LI (b),
EX (c), SE (¢, m) schemes, respectively.

1. Constant case (C (a) scheme)
We first treat the case where S (p) is constant, i.e. S (p)

=a,ac /. In this case, T(p) is equal to ap.
Applying Eqs.(10), (11), p and g are obtained as
| n]_| n—1
pi[ alit a JH’ (16)
g=n—a(p—1). (17)

By substituting Eq.(16) into Eg.(15), we can show
from Lemma 1 that the C (a) scheme is not universal.
2. Linear order case (LI (b) scheme)

We next consider the case in which S(p) is a linear
function of p, i.e. S(p)=bp, b, p V. Since T (p)=
bp(p+1)/2 in this case, p is obtained from Eq.(10) as

/ 8
_ —14 H—?n

PR T (18)

From Egs.(15), (18) and Lemma 1, the LI (») scheme
is not universal, either. We can extend S (p) to bp™
(or a more general polynomial of fixed degree m).
However, we can easily show that the universality
cannot be attained even if S(p) is extended to bp™
because the order of p is given by the (m+1)th root
instead of the square root of n.

3. Exponential order case (EX (¢) scheme)

Next, let. S(p) be an exponential function of p, i.e.
S (p) =c?! where ¢ is a parameter such that c=2, cE
N. As pointed out in Sect. 2, the scheme with S {(p) =
2771 je. the EX (2) scheme, coincides with the SP
scheme. Hence, EX (¢) scheme can be considered as
an extension of the SP scheme, which is universal.
From T (p)=(c?—1)/(c—1) and Eq.(10), we get

= logc{(c—1)n+1}]
g[ log.cn ] .
<logen+2. ' (19)

By substituting Eq.(19) into Eq.(15), Lex((n)
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bounded as follows
Lexo)(n) =p+ (p—1)logec+1

1
logsc

<<1+ >10g2n+3+log2c. (20)
Hence, from Eq.(20) and Lemma 2, the EX (¢) scheme
is universal and the family of £X (¢) schemes is almost
asymptotically optimal.

4. Super exponential order case (SE (¢, m) scheme)
The last case we treat is that S(p) is a higher order
function of p than the exponential order, i.e. ¢®™,
m,cE)N. If m=1, the scheme reduces to the
exponential case. Hence, we assume that m=2. For

simplicity, let T (p) =c*™ and S (p) =c®™ — c(p=1m,

From Eq.(10), we obtain

p:[”’,/logcn 1< m«/ Iogcn +1. (21)

By substituting Eq.(21) into Eq.(15), Lsge,m(n) is
bounded as follows

Lsee,m (1) =p=+[ logy (¢#™ — c®-1m)]
<p+pTlog.c+1
<Vlogen +2+ (Vlogen + 1) "logac
=log.n+"Vlogen +2
m (M .
-Hogch}1 | (Flogen)™ 7. (22)
V)
Therefore, from Lemma 3, the SE (¢, m) scheme is
asymptotically optimal.

We note that SP scheme is not asymptotically
optimal, ie. the asymptotic optimality cannot be
attained when the unary code By () is used as the
prefix part B,(-) of Eq.(6) in the message length
strategy. However, the asymptotically optimal repre-
sentation can be obtained from the grouping strategy

even- if the unary code By (p) is used as the prefix part
B,(p) of Eq.(12).

4. A New Representation for the Positive Integers

In the previous section, we showed that EX (c¢)
and SE (¢, m) schemes are almost asymptotically opti-
mal and asymptotically optimal, respectively. How-
ever, these asymptotic performances are valid only
when the entropy H (P) is huge. In practical cases
with a small or moderate entropy, these schemes and
known schemes categorized in the message strategy do
not attain a good performance compared with, for
instance, Capocelli’s Fibonacci scheme (Fib(f)
scheme where f is a parameter standing for the flag
length)1® or the Yamamoto-Ochi scheme (Yo(f)
scheme) ,*® which are classified in the flag strategy and
have good efficiency in large initial segments of the
positive integers. In this section, we propose a new
representation scheme, which is almost as efficient as
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the Fib(f) or YO(f) schemes.

‘Though the message strategy is not efficient, its
encoding and decoding algorithms are simple since the
suffix part [n]- can easily be obtained from #n. So, in
order to use this advantage, we define the suffix of Eq.
(12) as B,(q|S (p)) =[n]- by letting S (p) =27"" and
Bs(q|2*7") =[g—1],-1. However, instead of the unary
code, we use the C (a) scheme as the prefix of Eq.(12)
to improve the performance. Furthermore, to simplify
the encoding, we define the parameter a of the C (a)
scheme as a=2*, where k& /. Then, this scheme,
which we call CE (k) scheme, becomes

Beery (n) =B (P) [q— 1]17—1
= Bew (p) [n]-. (23)
From T (p)=2"—1 and Eq.(10), p is given as
p=|logen [+1. (24)

Furthermore, from Eqs.(16), (17), Bces(p) can be
represented by

Beew (p) =By (p')[q' —1]4, (25)
where

p’{flz_—ljﬂ, (26)

g'=p=2*(p'—1). (27)

From Eqgs.(24), (26), (27), we have

/ [Ll—o&ﬂﬁ 1 (28)

p = 2k
g'=| logon |+1 —[———L 102%3” JJ 2+
=[] logen | mod 2*],+1. (29)

Consequentty, CE (k) scheme is represented as
Besun (1) = BU( LLI_OngJ J+ 1)

‘[ logen Jmod 2*]u[n]., (30)
and the codeword length is given by

Lop(n) =[L—l°2g—”i J+ 1+k+ logen |

§<1+2Lk>logzn+k+l. (31)

From Eq.(31) and Lemma 2, the family of CE (k)
schemes is almost asymptotically optimal. Further-
more, from the properties 1~3 shown in Sect. 2, we can
easily show that CE (k) scheme preserves the lexico-
graphic, numerical, and length orders. We note that
although the YO (f) and Fib(f) schemes are efficient,
they preserve neither the numerical order nor the lexi-
cographic order. Furthermore, the YO(f) scheme
does not preserve the length order, either, and the
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Table 1 Codeword lengths for n=2".

M| Lsp Lpp Lraa) Lriay Lvos) Lvow Leeq)  Leee Leea)
0 11 3 4 3.00 4.000 4
1 3 ‘4 4 i) 400 5.000 3 4 5
25t s 5 6 - 525 6.000 5 5 6
B 3 Y 4 8. 6 7 6.50 7.125 6 6 7
4 9 9% 7 8 7.75. 8.250 8 8 8
5. 11 .. 10 8 -9 9.00 9.375 9 9 -9
6 13 11 9 10 10.25 10.500 11 10 10 |
715 14 100 11 1150 11625 12 oo
8 17 15 12 12 1275 12.750 14 13 13
9 19 16 13 13 14.00 13.875 15 14 14

0] 21 17 15 14 1525 15.000 7 15 5
12| 25 19 17 16 17.75 17.250 20 18 17
4] 290 21 207 19 0 20.25 19:500 23 20, 19
6] 33 .25 . 23 21 2275 21750 26 23 22
181,87 27 . 2 23 25.25 24.000 29 2 %4
20| 41- 29. 29 25 . 27.75 26.250 32 - 28 2%
2] 45 31 .32 28 - 30.25 28.500 35 30 28
24|49 33 35 30 3275 30.730 38 33 31
2| 53 35 38 32 3525 33.000 41 35 33

28 |57 3T 40 35 37.75 35.250 44 38 35
30| 61 39 43 37 240.25  37.500 47 40 37

encoding. and decoding. algorithms of the Fib(f)
scheme are complex because Fibonacci numbers must
be calculated.© On the other hand, the encoding and
decoding algorithms' of the CE (k) scheme is very
simple because the division and the modulo operations
in BEq.(30) is easily realized by the k bit-shift opera-
tion. :
We next compare the CE (k) scheme with other
schemes about the codeword length. The codeword
lengths necessary to represent n=2" (0<M <30) are
shown in Table 1, where the flag pattern of the YO (f")
scheme is 10”~! and Lyos) (n) is the average codeword
length given by

1 2M+11

Lyoi(n) == 2, Lyoir)(n) (32)

while the codeword lengths of the other schemes are
the actual lengths.

We note from Table 1 that Lcg@ (n) is not larger
than Lsp (n) and Lpp(n) for 22 n < 2% and is almost
as short as the Fib(3) scheme or the YO (3) scheme.

As an example of the probability distribution that
satisfies Eq.(1), we consider the geometric probability
distribution

Ps(n)=(1—6)6"", nEN,0<6<1, (33)
where the average of n, say 7, is given by

_ 1

n ~w (34)
The average codeword lengths are compared in Fig. 1.7
The YO(f) scheme is omitted in the figure since its
performance for the geometric probability distribution
is almost the same as the Capocelli’s Fib(f) scheme.®
We note from Fig. 1 that the CE(2) scheme is more
efficient than the SP and DP schemes for #>8 and is
almost as efficient as the Fib(3) scheme.
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Fig. 1 Expected codeword lengths for the geometrically dis-
tributed integers.

5. Conclusion

In this paper, a grouping strategy was proposed to
represent the positive integers, which includes the
message length strategy as a special case. We showed
that the EX (¢) and SE (c, m) schemes, which are
derived from the grouping strategy, can attain the
almost  asymptotic optimality and- the asymptotic
optimality, respectively.. We also derived the CE (k)
scheme from the grouping strategy, which has a good
practical performance in addition to the almost
asymptotic optimality. The CE (k) scheme is almost
as efficient - as the best of known representation
schemes. Furthermore, it preserves the numerical,
lexicographic, and length orders, and its encoding and
decoding algorithms are simple. Therefore, the CE (k)
scheme is one of the best representations for the posi-
tive integers to use in practical applications.

Various representation schemes can be derived
from the grouping strategy by devising B.(p),
B:(q|S(p)), and S(p) in Eq.(12). Hence, it may be
possible to obtain a better representation scheme from
the grouping strategy than the ones we treated in this

paper.
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