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Source Coding Theory for Multiterminal Communication Systems

with a Remote Source

Hirosuke YAMAMOTO* and Kohji ITOH**, Regular Members

SUMMARY The source coding problems are studied on the
Slepian-Wolf-type system with a remote source (Fig. 1) and the
Wyner-Ziv-type system with a remote source (Fig. 4). For the
former, inner and outer bounds are obtained on the admissible
rate region to attain a prescribed distortion tolerance. For the
latter, the rate-distortion function is derived. As examples, a
Gaussian remote source and a binary remote source are analyzed.

. Introduction

In most cases the source coding problem assumes
that a source output can be directly encoded for trans-
mission over a channel. In some practical situations,
however, uncoded noisy transmission may intervene
between a source and an encoder. For example, in
telephone networks, any sophisticated encoding and
decoding equipments could not be located at terminals
while central offices could be equipped with encoders
and decoders of considerable complexity. Also, there
are some cases where information to be transmitted is
measured data corrupted by measurement errors or a
source output is quantized for digital processing. The
source whose output may be distorted prior to encoding
is called remote source(l). The source coding problem
relating to the communication system comprising a
single encoder connected to a remote source, a single
channel and a single decoder has been studied in the
literatures V=) | On the other hand, a practical com-
munication system is often multiterminal. So the
source coding problems for certain multiterminal com-
munication systems also have been studied by various
authors 4=

In this paper we consider source coding problems
for two types of multiterminal communication systems
with a remote source. Section 2 deals with the system
in which a single remote source is connected to two
separate encoders, their outputs being supplied to a
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decoder via individual channels (Fig. 1). The system
resembles the one due to Slepian and Wolf® differing
in that the decoder estimates the output of the original
source and not the inputs to the encoders. Inner and
outer bounds are obtained to the region of admissible
coding rates to attain a prescribed distortion tolerance
in this system. The case of Gaussian remote source is
analyzed as an example. In Section 3, the rate-distor-
tion function is obtained for the Wyner-Zivi®,® -type
system consisting of one encoder connected to a remote
source and one decoder with side information. This
is a special case of the Slepian-Wolf-type system in
Section 2. As examples, the rate-distortion functions
for a binary and a Gaussian remote sources are de-
termined.

2. Slepian-Wolf-Type System with a
Remote Source

Let us consider first the system depicted in Fig. 1,
where {Xxl7-: and {Yy; Y,e)}io: are sequences
of random variables representing the source output
and the noisy channel outputs, respectively. Let the
source and the noisy channel be memoryless: that is,
let (Xg, Yip, Yoz), =1, 2, be generated by
repeated independent drawings of a triplet of random
variables (X, Y,, ¥,) which take values in ¥, /;, and
1/, respectively. Encoder : , :=1,2 can receive
only the sequence {¥;z} and encodes it at respective
rate, R; bits per input symbol, for transmission to
the common decoder, which in its turn emits a repro-
duction sequence {}?k} corresponding to the source
output sequence {X;} . X, takes values in %
X, 24, Y» and X are either discrete sets, the
reals or arbitrary measurable spaces.

Encoding and decoding are done in blocks of
length = , and the fidelity criterion is given by

EL Y DXy, R0 1)
k=1
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Fig. 1 Slepian-Wolf-type system with a remote source.
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where D | X x%—» [0,00) is a given distortion function
and E denotes expectation. A code (n, M, M,, 4)
is defined by three mappings Fp,, Fg, and Fp ,
which correspond to encoder 1, 2 and the decoder,
respectively;

Fgy Y= Iy, (22)
9 - yzn__, IMZ 2h)
Fp @ IngX Ipy,—%" (2¢)
where 2{0,1,-,M;—1} . The parameter
4 is defined by
1 n
42 F— kZ D(Xy, Xp) 3
1
N\
where X"=Fp(Fg,(¥Y]), Fg,(¥3)) , bold  face

letters representing vectors with » components.

A rate-pairs (R,,R,) is said to be d-admis-
sible if, for any given e¢>>0 and » sufficiently large,
there exists a code (n,M,,M,, 4) such that

Mi<e &t 1 2 (4)

and
A<d+¢. (5)

We define “R*(d) as the set of d-admissible rate-paris.

Our main problem is to determine the region
A*(d). However, this problem is very difficult to
solve exactly and bounds on R*(d) are derived in
the fo]lovv1'/13g. N

Let Y, and Y, be random variables distributed
]omtly with (X Y,,Y,) and take values in certain
sets yl and ;/2 , respectively. Define subset JQ/\1/1>2
in two dimensional Euclidean space by

PASETAN
R, (R, R RZIM Y5 7117,

R,21(Y,Y,; /I}z I/Y\l>y
PANPAS

Ri+R,=1(Y,\Y;; Y, Y)}. (6)
Lg\t /L\7='>i(d) be the set of pairs of random variables
(¥,7Y,) that satisfy properties (i) and (iii) below, and
let 2°(g) be the set of those which satisfy properties
(ii) and (iii).
. N\
(i) I(Y,‘;X Y,IY) O (z, 0=(1, 2), (2? {7)

that is, y1 —Y,— Y2 and X—(Y,Y,) YIYZ) form
Markov chams in that order.
(H)I(Y“XY lY) 0, G, ,)=(1,2),(2, 1) (8)

which means Y1 Y,—(¥,X) and
form Markov chains in that order.

sae . . N N D
(iii) There exists a function f:@74x74—> % such
that

—Y,— (¥, X)

ELD(X, f (7, T,)1<d. (9)
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Now define two regions, R(d) and R°(d), as

follows.

2oalasl  mes 10

P Ppen0@ 1Yz
A U ﬂ/\/\ ¢

Ri(a)2 YY pemi(@ Y1tz (11)
where [ J° denotes set closure. Then the following
theorem holds.

[Theorem 1]

Assume that a source satisfies the following con-
ditionst

1) 1f X, 24,7 and Zare finite discrete sets, it holds
that for Vo€ X andV2e %

D (x, Z)<oo (12)
(2) OtherwiseTT, it holds that for all 2¢%
E[D(X, @) ]<oo, 13

Furthermore for the random variable X satisfying
ED(X, X)<eo and for arbitrary >0, there exists

a finite subsets {%,]/_,S% and a quantization
mapping fgi%ﬁ {2;}/_, such that

ELD(X, fo(XNISQ+eELD(X, %],
Then,

RUDERMD) S R(d). (15)

Theorem 1 can be proved in the similar way as
Housewright (6,00 or Tung™,8  did. However,
we omit it because it is too lengthy. (The proof is given
in Ref. (12).)

As an example, let us consider a Gaussian remote
source shown in Fig. 2, where X, W, W,
dependent Gaussian random variables, and let the
distortion measure be D (x,Z)=(—%)? . Even under
these specifipations, it has been impossible to delimit
the set P'(d). _Accordingly, we make assumption
here that (¥, Y,, Yl, Yz) are jointly Gaussian. .R'(d)
obtained by this contraction of _®i(q) is an inner-
bound anyhow, though it may be slightly narrower 7+
than the exact one. Owing to the Gaussian assumption
and the condition (i),

are in-

Pi=v;+v;, i=1, 2 (16)

where V; is the Gaussian random variable N (0, a{‘}i)
independent with X,”; and #,, and let the function

It is quite natural to assume that D(«,2)=0 and for each
x € X there exists at least one = such that D (= J2)=0.

% As shown in Ref. (9), if X and % are the reals, D(x,2)=
le==]", 7>>0 and E|X|"<co, then condition (2) is satisfied.
1+ There is an indication in Ref. (13) that the jointly Gaussian
assumption is insufficient.
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Fig. 2 Gaussian remote source.

;\ be th(i\ minimum mean square estimator of X given
Y, and ¥, .

It is well-known that the differential entropy of
a jointly Gaussian [I-vector Z~ can be expressed in
terms of the determinant of the covariance matrix of

AR/ WAD
Hy(Z")="% log(27e|0,L) (1

By using this relation, we can show that the region
A'(d) defined by Eq. (11) is represented as follows.

‘/’Qi(d”)=b% {(R\,R)):R\=7,,Ry 27y, Ry+Ry =7}
1 0g

satisfy ) 18
-1, k 9
T2 R TR (el aE)
-1 kK
=g 18 i @
_1 _k_ )
=7 log 5242 21
(aZ+bE)+ (af+ bE)+ (af+ 83 (ad+57)
_ GfrsDeis) | , o
d, =

where 5;,:=1, 2 are parameters and the following
normalizations

Owyr.
L T )

1>

liﬂ O.)% ’
are performed.

Figure 3 illustrates ﬂi(d”) . For the purpose
of comparison, also drawn in the figure by dotted
lines are the regions for the case where the two encoders
can receive both ¥; and Y,, and the broken lines
indicate for the case where the independent encoders
make time-shared use of their respective input. The
former are outerbounds on R*(d,)’s and the latter
are innerbounds. The boundaries of L,’Qi(dn)’s ob-
tained are seen to lie between the boundaries of the
corresponding bounds.

MULTITERMINAL SOURCE CODING FOR REMOTE SOURCE

3. Wyner-Ziv-Type System with a
Remote Source

If the decoder in Fig. 1 can receive the sequence
{¥:} directly or equivalently, in case of finite s,
R, =H(Y,), the system reduces to the Wyner-Ziv-type
system with a remote source, which is illustrated in
Fig. 4.

Let us denote the rate-distortion function for this
system by R,Xd), and define R),(d) as follows.

Ra()2 inf 1(Y,; 7,1y 04
?Zevv,;z(d)

where D[, () is the set of the random variables 7,
jointly distributed with (X, ¥,,¥,) satisfying the
conditions,

. N

@v) 1(Y,; XY,lY,)=0 PN 25)

(v) There exists a function fw'z: UXUs> X such
that

ELD(X, fr (¥, $,)]<d. 0

Then, the following theorem is obtained from Theorem
1 by noting that R7*(d)=  inf R, and R'(4)
(thRz)eﬁ*(d)‘?lzyl
=R*@) =R°W)if ¥,=v, .
[Theorem 2]
If a source satisfies conditions (1) and (2) in
section 2, then

R,Y (d) = Ry (d) o

As the first example, consider again the Gaussian

remote source, Fig. 2. By letting 5?>— 0 in Egs. (20)
and (21), we obtain
2 2 2
1 1 a;(a;+ by
=== lo @)
272 % i 0+eD) dy
2 2 2
ai(as+ b
af tai+bi+af(af+s])= 222 9

n

By eliminating 57 from these equations, we obtain

RT¥ (@)=
(1 1
- log ,
() (e K L) e —
ay aq ay 1+L2 +L2
aj a;
: 1 <dns 11
i 2 1+7
1 ) a

T When ¥,=Y,, both 2(¢) and 2%d) equal to .2 (d).
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Fig. 3 R'(d,) for the Gaussian remote source.
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Rl[BITS/SYMBOL)

2 2
e;=a;=0.1,

Rl(BITS/SYMBOL)

(c) a12=0.1, a22=1.0.
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3.
3
g
=
ooz,
P
=
g
=
1.
0 1.0 2.0
R, (BITS/SYMBOL)
(b) af=0ci=1.0,
1
0, T <d,.
1+—
2
30

In this example, even if the encoder could know {Yl} ,
the rate-distortion function would not decrease just by
the same reason as in the jointly Gaussian example for
the Wyner-Ziv system ®section3)  The reason can be
explained by means of Figs. 5(a) and (b) which represent
the optimal test channels for each situations, respective-
ly, where « is an arbitrary constant and 5’ is the mini-
mum mean square estimator of X given ¥; and ?3 .
Two configurations can be transformed to each other
and attain the same values of the mean square error and
the conditional mutual information as follows.

1 81

1 cZ e
1 2
_§_+_._2_+ 5 5
g
Oy Oy 0W2+ Vo

d=E[(X-X)*1=

N A\
1Yy, V1Y) =1(Y,; Y5l
2
O
= 2 cf 0)2(+ alf,z+012,2

2 2
[ O'X+ Oy 2

_1
=5 log 2
Oyy

As the second example, let us consider a binary
remote source, Fig. 6, where =14 :%:%: {o,1},
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Fig. 4 Wyner-Ziv-type system with a remote source.
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Fig. 5 Optimal test channels for the Gaussian remote source
(a) in case the encoder cannot observe Y;, (b) in case
the encoder can observe Y; .

and the noisy channel consists of two binary symmetric
channels. The input probability is Qx(@=0x(D) =4+

and the bit error probabilities are P; and P, . Let the
distortion measure be the Hamming metric.
f 0 if x= .r
D(x, ac)
1 if xx% 83

Then, the following theorem is obtained.

[Theorem 3]

The rate-distortion function for the Wyner-Ziv
-type system with the binary remote source is given
as follows.

(i) Average distortion such that 4<min(P,, P,) is
not attainable.
(ii) For d=min(P,, P,),

if P,=P,

_{ 9@, P,<d<P,
0 » PI:;d BQ

it P,<P,
RI¥(d)=0, d=P, )

where ¢(d) is defined by

g@e inf Lo {a(P*P,*&)—a(&)}]],
01
{ogﬁ*Png,
d=08(Py*kA)+(1~0)P, (36)

and the following notations are employed.

2(1=y)+(1—2)y @n
hlx)a—zloge—(1—=x)log(1l—x) 38

x ¥ yL

The proof is given in the appendix.

R7*(d) versus d for the Gaussian and binary
remote sources are depicted in Figs. 7 and 8, res-
pectively.

If Y, equals X in Fig. 4, the system reduces to
the Wyner-Ziv system®® . This situation is attained
by letting e2=0 in Eq.(30)orin P,=0 in Eq.(34),
and RJ,(d) is observed to coincide with the rate
-distortion function for the Wyner-Ziv system®®. If,
on the other hand, Y, is independent of X and Y; in
Fig. 4, the system reduces to the Shannon system with
a remote source. This situation is achieved by letting
in Eq. (30) or P,=- in Eq. (34), and it
is easy to see that R, *(d) becomes equal to the rate
-distortion function for the Shannon system with a
remote source .

2
ay =00

4, Concluding Remarks

We have discussed the source coding problems for
the Slepian-Wolf-type system with a remote source
and the Wyner-Ziv-type system with a remote source.
For the former system the upper and lower bounds were
obtained on the admissible rate region, and for the latter
system the rate-distortion function was derived. The
result can be easily extended to a more general multi-
terminal system having several remote sources, encoders
and decoders (©,10,02 ,

In some situations, inputs to the separate encoders,
Y, and Y,, may be outputs of correlated sources
and, at the decoder, it is wanted to reproduce some

Y, X Y,
1-p 1-p
0 I o Z_ o
) P2
1 1 1

Fig. 6 Binary remote source.
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Fig. 7 Ry.(d,) versus d, for the Guassian remote source.
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versus d for the binary remote source.
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function of ¥, and Y,, X2 F(¥,,Y,), within a
prescribed distortion tolerance. For example, X=
Y,—Y, for continuous amplitude sources, or X=
Y,+Y, (mod 2) for binary sources. It is easily noticed
that theorems 1 and 2 hold for such situations.
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Appendix:Proof of Theorem 3

It is not difficult to see that average distortion
d less than min (P;,P,) cannot be attained even if
we estimate X from y; and ¥, according to the
maximum a posteriori probability criterion. So that
d<min(P;, P;) cannot be realized at the decoder
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no matter what code is used. On the other hand, the
decoder can obviously estimate X with d=P; from
Y, only. Thus R7¥(d)=0 for 4 =P, .

The most important part of theorem 3, Eq. (34),
can be proved in a similar way as in Ref. (8), Sec-
tion II except the following points. In proving the
inequality RT¥(D=<g(d), let X=/7 (¥, =P, and
?(zf,ZZ(YI,YZ) Y; instead of letting R=s¥,2)=2
and X=£(¥,Z)=Y at paragraphs a) and b) in Ref. (8),
Section II, respectively.

In order to prove the inequality R (d)>g(d) ,
define

2|y, f5.00 ?2)=f’ 1,5} (A*D)
Ay —d={y, f5,.00,905 (1, %)} (A*2)
6%P,{Y26A} (A-3)
X%éw— (Ar4)

P Y, €.4}
a4, 2E[D(X,017,=%,] (A*5)
'Aaz A4 da+(1=0)P,, (A+6)

Bed
then we can show

d'<d (A*7)
1<Y2,Y21Y>202 /Z/\[H(YIIY =9, —H(¥, ¥,=5,)]
et (A*8)

in the similar way as in Ref. (8), Egs. (39) and 40).
Furthermore, define

e f5.00,9)=1 5. (1,%,) for 5,4 (A*9)

as & P, VAT (5)17:=5, ) (A*10)

G W) h(Py*Pyxu)—h(u) (A*11)
then we obtain

AT, =) =h(as) (A*12)

(] Yy=5,)=h(ay *P,) (A*13)

A4 =aq * P, (A-14)

From Eqgs. (As3), (A+4), (A+8), (A«11)—(A-13) and con-
vexity of GG, LemmaA)

1@, Tl Y)=>0 Z A% G (as)

}’26‘,4
;00( Z i%a )
yzevd
=0LA(Py*Px)— (&) ] (A-15)
where
pa ] 505 (A+16)
.’5’26,4
On the other hand, from Egs. (A-6) and (A-4),
d'=0 Z A4, (@q ¥ P+ (1—-0) P,
leevd
=gi( L s a/\>*P2+(1 6)P, ]»
el
=g (F*P)+(1-0)P, (A-17)

where the second equality follows from Eq. (A-20).
Thus, Egs. (A-15), (A-17) and (84)—(36) yield

I AN A>F1CD (A+18)

Now, because of (A-7) and since g(d) is nonincreasing

in 4® , we have
1Yy Vo ¥ =g (a) (A+19)
Note:
Let Zakzl Then,
k
;ak(xk*y)
=Y apler(1=y)+ Q=) y |
k
=Edkxk(1-y)+zak(1_:¢k)y
P %
= epxp{(l—y)+(1—) aqpx
(;kk)( ) ( Zk:kk)y
=(Zakxk>*y. (A+20)
i




